Self-Hosted Scripting in Guile

Andy Wingo
Igalia, S.L.
Spain
wingo@igalia.com

ABSTRACT

Guile is a language implementation that grew out of the scripting
movement in the 90s. Its initial implementation was entirely written
in C. To increase the speed and expressive power of user programs
written in Scheme, about 10 years ago Guile started to move to
be a self-hosted compiler. Guile managed to keep the interactive,
source-focussed, fast-starting aspects of scripting even while adding
a sizeable Scheme compiler by making use of object file formats
from the static compilation world: DWARF and ELF.

CCS CONCEPTS

« Software and its engineering — Runtime environments;

KEYWORDS

Self-hosting, startup time, scripting, object file formats

ACM Reference Format:

Andy Wingo. 2018. Self-Hosted Scripting in Guile. In Proceedings of 2nd
International Conference on the Art, Science, and Engineering of Programming
(<Programming’18> Companion). ACM, New York, NY, USA, 1 page. https:
//doi.org/10.1145/3191697.3191727

1 PROBLEM STATEMENT

“Scripting” is an approach to programming that emphasizes a tight
loop between the user, an external system such as the UNIX shell,
and “scripts”. These scripts are programs that are understood by the
user as editable source code rather than untouchable build products.

Fast startup is essential to good user experience in scripting.
Running a script should be perceived by the user to be essentially
instantaneous: 10 or 20 milliseconds. This leaves not very much time
to load the language runtime, not to mention reading, compiling,
and running the script in question.

Guile [4] is an implementation of Scheme [5]. Scripting in Scheme
poses a unique problem for startup in that the syntax is programmable:
Scheme’s macros are subprograms, potentially defined by the script
in question, that process the script itself before it is run [6]. Com-
pare to Lua, for example, which needs run no Lua code before
running a script. Guile’s first compiler, in version 2.0, introducd
cached compilation artifacts for scripts, amortizing not only the
read time for programs, but the macro expansion time too.

As one moves from a source-based system to a compiled system,
there are a number of ancillary bits of metadata to carry forward

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

<Programming’18> Companion, April 9-12, 2018, Nice, France

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5513-1/18/04...$15.00
https://doi.org/10.1145/3191697.3191727

57

that aren’t usually necessary to a program’s normal execution:
source locations, procedure names, argument and local variable
names, live variable maps, and the like. Users expect to see good
backtraces, for example, and may want an interactive debugger.
However recording this metadata in object files may be at odds
with the fast-start behavior that users expect from scripts.

2 ELF AND DWAREF IN GUILE

Guile’s first compiler embedded script metadata in the object files
in an ad-hoc fashion. The new compiler in version 2.2 takes this
farther by using ELF [2] as the compiled object file format [3]. Guile
writes DWAREF [1] debugging sections that map code locations to
source locations, in a way that can be stripped out from the binaries
using standard objdump UNIX utility.

Guile embeds its own ELF and DWAREF readers and writers and
uses them on all platforms. The benefit of ELF and DWAREF is that
they encourage VM writers down a path which has low startup
overhead. Read-only code and data pages are naturally shareable
between processes, and writable data pages are lazily paged in
by copy-on-write. Using ELF encourages an attention to the cost
of relocation at startup, which results in more relative references
between statically allocated code and data rather than absolute
references that may be more convenient but require more relocation
cost.

This talk will look into specific ways in which Guile used ELF
and DWAREF to result in single-digit millisecond boot times while
keeping debuggability.

More generally, self-hosting runtimes can be part of a virtuous
cycle, where a more powerful compiler leads to more optimized
code and faster boot, or a vicious cycle where the growing weight
of the runtime leads to longer and longer startup time. Keeping in
mind the object file format of residual compiled code prevented
Guile from straying into vice.

REFERENCES

[1] TIS Committee et al. 1995. DWARF debugging information format specification
version 2.0. (May 1995).

TIS Committee et al. 1995. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification Version 1.2. TIS Committee (1995).

The GNU Project. 2013. Guile Manual: Object File Format. (Dec. 2013). Re-
trieved January 26, 2018 from https://gnu.org/s/guile/docs/master/guile.html/
Object-File-Format.html

The GNU Project. 2018. Guile programming language. (Jan. 2018). Retrieved
January 26, 2018 from https://gnu.org/s/guile

Michael Sperber, R Kent Dybvig, Matthew Flatt, Anton Van Straaten, Robby Findler,
and Jacob Matthews. 2009. Revised6 report on the algorithmic language Scheme.
Journal of Functional Programming 19, S1 (2009), 1-301.

Oscar Waddell and R Kent Dybvig. 1999. Extending the scope of syntactic abstrac-
tion. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 203-215.

https://doi.org/10.1145/3191697.3191727
https://doi.org/10.1145/3191697.3191727
https://doi.org/10.1145/3191697.3191727
https://gnu.org/s/guile/docs/master/guile.html/Object-File-Format.html
https://gnu.org/s/guile/docs/master/guile.html/Object-File-Format.html
https://gnu.org/s/guile

	Abstract
	1 Problem statement
	2 ELF and DWARF in Guile
	References

