
State of JS
Implementations,
2014 Edition
webengineshackfest.org

Andy Wingo



Agenda
History

New things



A brief history of JS
1996-2008: slow

2014: fastish



A brief history of JS
1996-2008: slow

2014: fastish

Environmental forcing functions

Visiting a page == installing an app

Cruel latency requirements



JS: speed via dynamic proof
“Adaptive optimization”

A revival of compilation techniques pioneered
by Smalltalk, Self, Strongtalk, Java
expr ifTrue: block

Inlining key for performance: build sizable
proof term

JS focus: low-latency adaptive optimization
(fast start)

lazy parsing and compilation❧





All about the tiers
“Method JIT compilers”; Java’s HotSpot is
canonical comparison

The function is the unit of optimization

asm.js code can start in IonMonkey / Turbofan;
embedded static proof pipeline



Optimizing compiler awash in
information
Operand and result types

Free variable values

Global variable values

Sets of values: mono-, poly-, mega-morphic



Optimizations: An inventory
Inlining

Code motion: CSE, DCE, hoisting, sea-of-nodes

Specialization

Numeric: int32, uint32, float, ...❧

Object: Indexed slot access❧

String: Cons, packed, pinned, ...❧

Allocation optimization: coalescing, scalar
replacement, sinking

Register allocation



Dynamic proof, dynamic
bailout
Compilation is proof-driven term specialization

Dynamic assertions: the future will be like the
past

Dynamic assertion failure causes proof
invalidation: abort (“bailout”) to baseline tier

Bailout enables static compilation techniques
(FTL)





A brief history of JS
1996-2008: slow

2014: fastish

...via adaptive optimization.



New things in 2014



New things in 2014
SM, JSC, V8

First perf, then features



SpiderMonkey perf
SM won Octane!

Landing of precise GC, then generational GC

https://blog.mozilla.org/javascript/2013/
07/18/clawing-our-way-back-to-precision/

Compacting GC in the works

Lots of Ion work



JSC perf
(I am less knowledgeable here)

“Fourth-tier LLVM” (FTL) JIT





V8 perf
End of the road for Crankshaft

New thing: Turbofan

Fully typed IR, more capable of reliably
inferring types over big asm.js programs

Sea-of-nodes approach transparently enables
code motion

Status: enabled, but for asm.js code only



Features
ECMAScript 6 (ES6) was supposed to arrive this
year, punted to next year, but all implementors
involved in process

All engines are actively implementing ES6
features

JSC has implemented some features but not as
focussed

http://kangax.github.io/compat-table/es6/





Trends
Architectural convergence

Ongoing perf work to make JS a better language
to compile to (OdinMonkey, FTL, TF)

Ongoing ES6 feature work to make JS a better
language to write



2015 predictions
TF landing?

More LLVM passes enabled in FTL?

ES6, ES7, other language experimentations?

?


