
Scheme to
Wasm
Use and misuse of the GC proposal

18 Apr 2023 – Wasm GC subgroup

Andy Wingo

Igalia, S.L.

Prehistory Guile co-maintainer (https://
gnu.org/s/guile/)

Wanted to target wasm for a while;
didn’t because no gc

Also didn’t know how to do delimited
continuations

Now: idea and funding via https://
spritely.institute/

Interruptions welcome

A work in
progress

Spritely + Igalia working on Scheme to
WebAssembly

Based on Guile

Re-use front and middle-end, replace
backend and runtime

Source IR: “CPS soup” https://
www.gnu.org/software/guile/
manual/html_node/CPS-Soup.html

Data types: f64, i64, u64, SCM

Ark rather than raft

Early days

Scheme to
Wasm

Avoid truncating language to platform;
bring whole self

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm:
Values

The unitype: (ref eq)

Non-nullable

Immediate values in (ref i31)

fixnums with 30-bit range❧

chars, 2 bools, 3 other oddballs❧

Scheme to
Wasm:
Values (2)

Heap objects subtypes of struct;
concretely:
(rec
 (struct $heap-object
 (struct (field $hash (mut i32))))
 (struct $pair
 (sub $heap-object
 (struct (mut i32)
 (mut (ref eq)) (mut (ref eq)))))
 (struct $mutable-pair
 (sub $pair
 (struct (mut i32) (mut (ref eq)) (mut (ref eq)))))
 ...)

Hybrid nominal typing via rec

Scheme to
Wasm:
Values (3)

(func $car (param (ref eq))
 (result (ref eq))
 (struct.get $pair 1
 (block (ref $pair)
 (br_on_cast $pair 0 (local.get 0))
 (call $type-error)
 (unreachable))))

set-car! checks for $mutable-pair;
similar treatment for vectors,
bytevectors, bitvectors, strings (ugh)

Scheme to
Wasm:
Values (4)

(rec
 ...
 (type $bignum
 (sub $heap-object
 (struct
 (field $hash (mut i32))
 (field $val (ref extern)))))
 ...)

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm:
Varargs (1)

(list 'hey) ;; => (hey)
(list 'hey 'bob) ;; => (hey bob)

Problem: Wasm functions strongly
typed
(func $list (param ???) (result (ref eq))
 ???)

Solution: Virtualize calling convention

;; nargs param; first 3 args as params
(type $kvarargs
 (func (param $nargs i32)
 (param $arg0 (ref eq))
 (param $arg1 (ref eq))
 (param $arg2 (ref eq))))

;; next 5 args as globals
(global $arg3 (mut (ref eq)) (i31.new (i32.const 0)))
...
(global $arg7 (mut (ref eq)) (i31.new (i32.const 0)))

;; "Memory" for the rest
(table $argv (ref eq) 0 (i31.new (i32.const 0)))

Downside: export/import globals, table; globals worth it?

(define (pi pair)
 (values (car pair) (cdr pair)))
(define (dup pair)
 (call-with-values (lambda () (pi pair))
 (lambda (car cdr)
 (cons car cdr))))

;; values ignored in for-effect context; equivalent:
(begin (pi pair) #t)
(call-with-values (lambda () (pi pair))
 (lambda args #t))

;; sloppy truncation
(define (car pair) (values (pi pair)))

How? Answer in a minute

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm: Tail
calls

Tears of joy

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm:
Prompts (1)

Problem: Lightweight threads/fibers,
exceptions

Possible solutions

Eventually, built-in coroutines❧

https://github.com/
WebAssembly/binaryen’s asyncify
(not yet ready for GC); see Julia

❧

Delimited continuations❧

“Bring your whole self”

Scheme to
Wasm:
Prompts (2)

Prompts delimit continuations
(define k
 (call-with-prompt 'foo
 ; body
 (lambda ()
 (+ 34 (abort-to-prompt 'foo)))
 ; handler
 (lambda (continuation)
 continuation)))

(k 10) ;; ⇒ 44
(- (k 10) 2) ;; ⇒ 42

k is the _ in (lambda () (+ 34 _))

Scheme to
Wasm:
Prompts (3)

Delimited continuations are stack
slices

If cont not lexically used: escape-only
(exception building block)

Make stack explicit via minimal
continuation-passing-style conversion

Turn all calls into tail calls❧

Allocate return continuations on
explicit stack

❧

Breaks functions into pieces at non-
tail calls

❧

Scheme to
Wasm:
Prompts (4)

Before a non-tail-call:

Push live-out vars on stacks (one
stack per top type)

❧

Push continuation as funcref❧

Tail-call callee❧

Return from call via pop and tail call:
(return_call_ref $kvarargs (i32.const 0)

val0 val1 val2
 (call $pop-return))

After return, continuation pops state
from stacks

Scheme to
Wasm:
Prompts (5)

abort-to-prompt:

Pop stack slice to reified
continuation object

❧

Tail-call new top of stack: prompt
handler

❧

Calling a reified continuation:

Push stack slice❧

Tail-call new top of stack❧

Willing to sacrifice multi-shot to use
effect handlers proposal, though!

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm:
Numbers

Numbers can be immediate: fixnums

Or on the heap: bignums, fractions,
flonums, complex

Supertype is still ref eq

Consider imports to implement
bignums

On web: BigInt❧

On edge: Wasm support module
(mini-gmp?)

❧

Dynamic dispatch for polymorphic
ops, as usual

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Miscellenea Debugging: DWARF; prompts

Wasm parser, assembler, etc in
Scheme (including all V8 extensions)

Strings: stringref

“Beyond relooper”; irreducible CFG
TBD

No linear memory

AOT: wasm2c

Status: very early days

Stringref
usage

(type $string
 (sub $heap-object
 (struct
 (field $hash (mut i32))
 (field $str (mut string)))))

WTF-8 view for port (like FILE*)
buffer

Codepoint iter view for (string-ref
str N)

string.const has been a debugging
delight

Scheme to
Wasm

(visit-links
 "gitlab.com/spritely/guile-hoot-updates"
 "wingolog.org"
 "wingo@igalia.com"
 "igalia.com"
 "mastodon.social/@wingo")

