
Scheme + Wasm
+ GC = MVP
Hoot Scheme-to-Wasm compiler
update

11 Oct 2023 – Wasm CG

Andy Wingo

Igalia, S.L. / Spritely Institute

Agenda Scheme-to-Wasm/GC update

https://github.com/WebAssembly/
meetings/blob/main/gc/2023/
presentations/2023-04-18-wingo-
scheme.pdf

Goal: not marketing, not research, but
feedback / feedforward

Refresher❧

Status❧

Observations❧

Refresher
(1/4)

Source language: Scheme (Guile
flavor)

Unityped: (ref eq)

Immediates: (ref i31)

Fixnums, chars, oddballs (e.g. #t, '())❧

(Most) everything else in a big rec
group
(rec
 (type $heap-object
 (sub
 (struct
 (field $hash (mut i32)))))
 ...)

Refresher
(2/4)

Default calling convention:
(type $kvarargs
 (func (param $nargs i32)
 (param $arg0 (ref eq))
 (param $arg1 (ref eq))
 (param $arg2 (ref eq))))

(More precise for known calls)

Callees check incoming arity

Args 3-7 in globals

Args 8-n in a table; shrug!

Refresher
(3/4)

CPS-conversion: All calls are tail calls

Stack-allocated return continuations

Non-tail calls push live vars and push
return (ref $kvarargs)

Return: Pop and return_call_ref
$kvarargs

Return continuations check arity and
pop live vars to restore

Refresher
(4/4)

Non-tail calls push live vars and push
return (ref $kvarargs)

Three stacks: Raw in linear memory,
(ref eq) in a table, (ref $kvarargs)
in a table

Also a stack for dynamic bindings
(prompts, fluids, dynwinds)

Suboptimal! But, it gives us delimited
continuations

Would happily switch to stack
switching

Status Current status: MVP.

(Almost) R7RS-small plus Guile
extensions (delimited continuations,
optargs, etc)

Specific updates:

Toolchain❧

Compiler❧

Runtime❧

Testing❧

Status:
Toolchain

Text (Guile datums) and binary reader /
writer

Static linker: Provide defs missing in
a.wasm from b.wasm

Transforms: Lower-globals, lower-
stringref, symbolify, restackify (in
progress)

Partial validator and interpreting VM

Benefit: Experiments (stringref),
expressiveness (lower-globals),
serendipity (inline-wasm)

Status:
Compiler

Started on fork of Guile, but merged
new backend abstraction; now using
mainline

Source language: “CPS soup”; SSA-like

“Beyond relooper” FTW

Whole-program rather than separate
compilation + dynamic linking

Status:
Runtime

Deployment model: Open-world,
Wasm only

Hosts (can) use separate, generic
reflect.wasm to inspect, access, and
create values, call functions

Host facilities: Bignums, weak maps,
f64 to/from string, sqrt/sin/cos/etc,
string upcase/downcase, host string
to/from wtf8

Status:
Testing

Two hosts: JS (V8) and Hoot (Guile)

Hoot VM useful for tighter edit/
compile/debug cycle

Stepping, trace, inspect locals,
backtrace, dump

Hoot stringref: Guile strings

Complete enough, but not full Wasm.
Probably will fill out later

Observations This is where I try to be useful

But first...

Thank
you!!!

Tail calls landing at the same time

My cup overfloweth

Observations On retargetting an existing compiler

On stringref

On globals

On the utility of wat

On integers

On debugging

On the component model

On the future

On
retargetting
(1)

SSA-like IR just fine; beyond relooper
great

Propagate high-level types all the way
through the middle-end

Guile: IR needed slight expansion for
explicit returns

WasmGC is a 32-bit target: offsets,
fixnums; what would 64-bit look like?

On
retargetting
(2)

Calls: Sometimes you know the callee
and can have a special calling
convention (e.g. that doesn’t check
arity)

Returns: Harder to know return arity,
but sometimes possible; however
return stack is generic (ref
$kvarargs)

Had to add special pass to pessimize
returns by trampolining through
$kvarargs

Stack switching would be a big win

On
retargetting
(3)

Wasm stack allocation is not like
register allocation: unlimited in
number, heterogeneous in type

Hoot punts: one local per intermediate
value. No stack data flow between IR
ops

Restackify pass in the works

On
retargetting
(3)

Non-nullable unitype + explicit
intermediate values: joins need special
treatment

Currently: Eagerly initialize (ref eq)
joins to (ref.i31 (i32.const 0))

Restackify will mitigate: block result
values

On
retargetting
(4)

Multi-byte access to (array i8)
excruciating
(('s16-ref ann obj ptr idx)
 `(,(local.get ptr)
 ,(local.get idx)
 (i32.wrap_i64)
 (array.get_u $raw-bytevector)
 ,(local.get ptr)
 ,(local.get idx)
 (i32.wrap_i64)
 (i32.const 1)
 (i32.add)
 (array.get_s $raw-bytevector)
 (i32.const 8)
 (i32.shl)
 (i32.or)
 (i64.extend_i32_s)))

(i32.load16_s $bytes) ?

On stringref (sub $heap-object
 (struct $string
 (field $hash (mut i32))
 (field $str (ref string))))

string.const for literals.

string.as_iter +
stringview_iter.advance for string-
length.

Same plus stringview_iter.next for
string-ref.

Hash: stringview_iter.next loop.

Lots of string.const for debugging

On stringref
(2)

Textual I/O: “port” with WTF-8 buffer

String ports are string builders

Per-char read (fgetc, but for
codepoints) currently uses stringref,
but probably should decode bytes
directly using DFA

On stringref
(3)

string-copy uses
stringview_iter.slice

String comparison uses
string.compare; not just Java :P

string->utf8 uses
string.measure_wtf8,
string.encode_wtf8_array; reverse is
string.new_lossy_utf8_array

On stringref
(4)

To ship, we must remove stringref

Solution: Pass to replace with (array
i8)WTF-8 internally

Wrap outgoing: (func (param (ref
$wtf8)) (result (ref extern)))

Wrap incoming: (func (param (ref
extern)) (result (ref $wtf8)))

If we have to choose: UTF-8.

But we would rather use the host’s
strings

function wtf8_to_string(wtf8) {
 let { as_iter, iter_next } = wtf8_helper.exports;
 let codepoints = [];
 let iter = as_iter(wtf8);
 for (let cp = iter_next(iter); cp != -1; cp = iter_next(iter))
 codepoints.push(cp);
 return String.fromCodePoint(...codepoints);
}

function string_to_wtf8(str) {
 let { string_builder, builder_push_codepoint, finish_builder } =
 wtf8_helper.exports;
 let builder = string_builder()
 for (let cp of str)
 builder_push_codepoint(builder, cp.codePointAt(0));
 return finish_builder(builder);
}

On stringref
(6)

Lowering to (array i8) not quite
transparent

Imports: WTF-8 from other Scheme
wasm modules, externref from host;
similar with exports

string.const values to
array.new_data globals; not const :-((

Can’t be in elem sections

On stringref
(7)

What about JS Builtin Strings? Can
help, but less appropriate for use case.

Missing: encodeWtf8Array /
toWtf8Array, UTF-8 variants (WTF-8,
lossy), measuring WTF-8 size

Literals: Either array.new_data +
fromWtf8Array or generate JavaScript;
not const

BYO iterators. To be fair, (array i8)
is same

Hoot is not JS-specific in any way. See
e.g. Hoot VM

On stringref
(8)

Hoot: Stringref is a toolchain concept

Can leave as stringref; default is to
lower

JS Builtin Strings may ameliorate
boundary costs, but not as string repr:
unlikely to be present on non-JS hosts

On stringref
(9)

The system would be better with
abstract host strings

DOM calls will never (?) be fast
without stringref AFAICS

Smaller modules, fewer copies, less
host code, better portability

Better for users than (array i8)

</>

On globals Compound literals best implemented
as globals

Globals have to have const initializers

Some literals not const:
array.new_data, hash-consed literals
from aux compilation units

Solution: Just emit a non-const init; fix
up in post-pass, synthesize start

Note! Non-constness propagates
mutability, nullability to other literals,
code uses; ref.as_non_null

On wat About 3.5 kSLOC of wat in low-level
stdlib; good experience

Folded form is a blessing to humans

Hoot: A mechanical optimization of
low-level stdlib would be fruitful

Very nice for debugging,
communication

On wat (2) Unexpected benefit: %inline-wasm

(define (bitvector-length bv)
 (unless (bitvector? bv)
 (error "expected bitvector" bv))
 (%inline-wasm
 '(func (param $bv (ref eq)) (result (ref eq))
 (ref.i31
 (i32.shl
 (struct.get $bitvector $len
 (ref.cast $bitvector (local.get $bv)))
 (i32.const 1))))
 bv))

Inline wasm, rewrite params to refer to provided locals

Only for functions ATM. Coming: FFI imports, global decls

On integers Native: Check fixnum by checking low
bits

Wasm: Check fixnum by ref.test i31
then ref.cast i31 (unless you can
emit br_on_cast_fail), then
i31.get_s and check low bit is 0

Would be nice to be able to subtype
and partition i31 space

On integers
(2)

Native: Add const to fixnum, branch
on overflow

Wasm: Uhhhhhhh, call a function

Can has i31.br_on_add_fail ? Or
anything, really.

On integers
(3)

Native: If adding fixnums fails, make a
bignum

Wasm: Uhhhhhhh, call a function

Thinking the thinkable: Built-in
bignum with int supertype, and
int.add_generic ? Would have to take
(ref i31) subtyping into account.

feedforward, n.: just another word for
puke

On
debugging

State of the art is still printf debugging,
though with string.const

Explicit stack means we can print a
backtrace, but all in a glob: what data
corresponds to what frame?

Return continuations not eq; cannot be
associated with side tables

Mitigation: Use the host; NYI

Can has funcref side tables, somehow?
Associated with code, not closure

On the
component
model

Haven’t had the budget yet to think
about it

Impression: Component model is for
linear memory modules. Cue “prove
me wrong” guy meme

I would like to learn; please correct my
ignorance!

On the
future

Next milestone: Spring 2024

Full Guile language, including
modules

❧

FFI imports❧

Optimization❧

Fibers❧

Stack switching?❧

OCapN / Goblins❧

Thanks for
listening!

Summary: GC stands for Great
Communitygroup

https://spritely.institute/news/
scheme-wireworld-in-browser.html

Please grab me afterwards to chat!
(visit-links
 "gitlab.com/spritely/guile-hoot"
 "wingolog.org"
 "wingo@igalia.com"
 "igalia.com"
 "spritely.institute"
 "mastodon.social/@wingo")

