
Stringrefs
Reference-typed strings in
WebAssembly

Andy Wingo | wingo@igalia.com

https://github.com/wingo/
stringrefs/

Agenda Motivation

Overview: Goals, Requirements,
Design, Proposal

Open questions / feedback

https://github.com/wingo/
stringrefs

Motivation Three examples of suboptimality

C++ on the web: double copies,
memory capability

❧

Java on web: DOM access
expensive, code duplication

❧

Component model: from single
copy to zero copy

❧

C++
on the
web

https://github.com/emscripten-
core/emscripten/blob/main/src/
preamble.js#L100

C++
on the
web

Double-copy (first to stack then to
where you need it)

NUL termination (have to scan again for
length)

Can’t represent NUL codepoints

Requires read/write capability on
whole memory

Requires that users wrangle malloc

Requires JS

Similar problems in other direction

C++
on the
web

Also it’s buggy :)

https://github.com/emscripten-
core/emscripten/issues/15324

Java
on the
web

JS strings are exactly what Java needs:
immutable sequences of 16-bit code
units

But all Java can do is GC array of u16 –
GC allocation on Java/JS boundary

Penalizes access to DOM

Penalizes JS/Java interaction

Needlessly ships second string facility

Component
model

Components are isolated

Communication via abstractly-
typed interfaces

❧

JIT compilation of adapters for
concrete representations

❧

Linear memory strings always copied
at least once between components

Strings in GC memory: same (because
mutability)

Could do better if WebAssembly had
immutable stringrefs

Why
not
u16
arrays?

You can implement GC in linear
memory, but it is terrible

On web, GC is right there, let’s use it

Same argument for JS strings

Implies growing WebAssembly
platform for non-JS hosts

But, immutable stringrefs also good
for component model

❧

Why
not a
library?

Duplication: Host already has strings

Duplication: Avoid library per module
or component

Inefficiency: Module boundary is a
barrier

Platform effects: Strings are interop
MVP

Goals Enable programs compiled to
WebAssembly to efficiently create
and consume JavaScript strings

❧

Provide a good string
implementation that many
languages implemented on top of
the GC proposal would find useful

❧

Req’ts Zero-copy string passing between
JS and Wasm

❧

No new string implementations on
the web

❧

Allow WTF-8 or WTF-16 internal
representations

❧

Allow WTF-16 code unit access❧

Allow string literals in element
sections

❧

Design The tension:

Source languages: UTF-8 for Rust,
WTF-16 for Java, codepoint access
for Python...

❧

Implementations: WTF-16 for V8,
UTF-8 for wasmtime...

❧

Solve via common-denominator
stringref plus encoding-specific
stringviews

Proposal stringref is new opaque reference-
typed value, like externref

A stringref is a sequence of Unicode
scalar values and isolated surrogates

Can obtain WTF-8, WTF-16, codepoint
iterator “views” on a stringref

stringref
(string.new_wtf8 $memory ptr:address bytes:i32)
 -> str:stringref
(string.new_wtf16 $memory ptr:address codeunits:i32)
 -> str:stringref
(string.const contents:i32)
 -> str:stringref
(string.measure_utf8 str:stringref)
 -> bytes:i32
(string.measure_wtf8 str:stringref)
 -> bytes:i32
(string.measure_wtf16 str:stringref)
 -> bytes:i32
wtf8_policy ::= 'utf8' | 'wtf8' | 'replace'
(string.encode_wtf8 $memory $wtf8_policy str:stringref ptr:address)
(string.encode_wtf16 $memory str:stringref ptr:address)
(string.concat a:stringref b:stringref) -> stringref
(string.eq a:stringref b:stringref) -> i32
(string.is_usv_sequence str:stringref)
 -> bool:i32

stringview_wtf8
(string.as_wtf8 str:stringref)
 -> view:stringview_wtf8
(stringview_wtf8.advance view:stringview_wtf8 pos:i32 bytes:i32)
 -> next_pos:i32
(stringview_wtf8.encode $memory $wtf8_policy view:stringview_wtf8 ptr:add
 -> next_pos:i32, bytes:i32
(stringview_wtf8.slice view:stringview_wtf8 start:i32 end:i32)
 -> str:stringref

stringview_wtf16
(string.as_wtf16 str:stringref)
 -> view:stringview_wtf16
(stringview_wtf16.length view:stringview_wtf16)
 -> length:i32
(stringview_wtf16.get_codeunit view:stringview_wtf16 pos:i32)
 -> codeunit:i32
(stringview_wtf16.encode $memory view:stringview_wtf16 ptr:address pos:i3
(stringview_wtf16.slice view:stringview_wtf16 start:i32 end:i32)
 -> str:stringref

stringview_iter
(string.as_iter str:stringref)
 -> view:stringview_iter
(stringview_iter.cur view:stringview_iter)
 -> codepoint:i32
(stringview_iter.advance view:stringview_iter codepoints:i32)
 -> codepoints:i32
(stringview_iter.rewind view:stringview_iter codepoints:i32)
 -> codepoints:i32
(stringview_iter.slice view:stringview_iter codepoints:i32)
 -> str:stringref

Relation
to GC

Not dependent on GC MVP

Same family though

Best “like externref” formulation is in
terms of heaptype, from typed
function references

Will want array u16, array u8 read/
write

Open
questions

Type relationship of stringview
variants

eq supertype or not?

Utility of WTF-8 view

Performance proof

next
steps

CG meeting 26 April: phase 1?

Move repo to WebAssembly org

Q2-Q3: Prototyping in V8

Q3-Q4: Toolchain (LLVM, Binaryen)

https://github.com/wingo/
stringrefs/

wingo@igalia.com

