
Knit, Chisel,
Hack: Crafting
with Guile
Scheme
AndyWingo ~ wingo@igalia.com

wingolog.org ~ @andywingo



I love
craft!

Woodworking

Gardening

Grow-your-own

Brew-your-own

Knit-your-own

Sew-your-own

Roast-your-own

Repair-your-own

Build-your-own

Why?



crafty
pleasures

Making and building

Quality of result

Expressive aspect: creativity

Fitness to purpose

Increasing skill



what’s
not
crafty?



what’s
the
difference?

Craft is produced on human scale
(hand tools)

Craft is made to fit (own clothes)

Craft touches roots (grow your own)

Craft is generative (wearables)







ohai! Guile co-maintainer since 2009

Publicly fumbling towards good
Scheme compilers at wingolog.org

Thesis: Guile lets you build with craft



quick
demo



scheme
expressions

Constants: 1, "ohai"

Some constants need to be quoted:
'(peaches cream)

Functions: (lambda (a b) (+ a b))

Calls: (+ a b)

Sequences: (begin (foo) (bar))

If: (if (foo) (bar) (baz))

Lexicals: (let ((x (foo))) (+ x x))

That’s (pretty much) it!





repl
as
workbench

,profile

,disassemble

,break

,time

,expand

,optimize

,bt

,help



building
and
growing

How to take a small thing and make
it bigger?

How to preserve the crafty quality as
we add structure?





scripts Do more by leveraging modules
(use-modules (ice-9 match)
             (web client))

(match (program-arguments)
 ((arg0 url)
  (call-with-values
      (lambda () (http-get url))
    (lambda (response body)
      (display body)))))



built-
in
modules

POSIX

Web (client, server, http bits)

I/O (Binary and textual, all
encodings)

XML (and SXML)

Foreign function interface (C
libraries and data)

Read the fine manual!



from
scripts
to
programs

Script: Up to a few pages of code,
uses modules to do its job

Program: It’s made of modules

System: No one knows what it does



from
scripts
to
programs

Programs more rigid, to support
more weight

Separate compilation for modular
strength

Programs need tooling to manage
change

Keyword arguments for
extensibility

❧

Warnings from compiler❧

Facilities for deprecating and
renaming interfaces

❧



what’s
a
scripting
language
anyway

A sloppy language with a slow
implementation

A historical accident



guile’s
speed
bridges
the
gap

Allocation rate: 700-800 MB/s

Instruction retire rate: 400M-500M
Inst/s

Startup time: 8.8ms

Minimummemory usage (64-bit):
2.15 MB

Sharing data via ELF





versus
other
langs

(All the caveats)
# Python 3
for i in range(0, 1000000000):
  pass

;; Scheme
(let lp ((i 0))
  (when (< i #e1e9)
    (lp (1+ i))))

// C
for (long i = 0; i < 1000000000; i++)
  ;



versus
other
langs

Python 3: 81.2 cycles/iteration

Guile 2.0: 67.3 cycles/iteration

Guile 2.2: 12.1 cycles/iteration

gcc -O0: 5.66 cycles/iteration

gcc -O1: 0.812 cycles/iteration (3.7
IPC)

gcc -O2: friggin gcc



catching
up on
c

Native compilation coming in Guile
3



not
catching
up on
c

Heap corruption

Stack smashing

Terrible errors



scale
out

Guile has real threads and no GIL!

Processes too

But is it WEB SCALE?!?!?



tools
for
growth

Macros

Prompts



macros
extend
language
syntax

Different kinds of let: letpar, let-
fresh, ...

Pattern matchers: match, sxml-match, ...

Constructors: SQL queries, nested
structured records, ...

Instrumentation: assert-match,
assert-index, logging

“Decorators”: define-deprecated,
define-optimizer, ...

Cut a language to fit your problem



prompts /home/wingo% ./prog

Two parts: system and user

Delimited by prompt



prompts try {
  foo();
} catch (e) {
  bar();
}



prompts
in
guile
scheme

Early exit

Coroutines

Nondeterminism



make
a
prompt

(use-modules (ice-9 control))

(% expr
   (lambda (k . args) #f))



make
a
prompt

(use-modules (ice-9 control))

(let ((tag (make-prompt-tag)))
  (call-with-prompt tag
    ;; Body:
    (lambda () expr)
    ;; Escape handler:
    (lambda (k . args) #f)))



prompts:
early
exit

(use-modules (ice-9 control))

(let ((tag (make-prompt-tag)))
  (call-with-prompt tag
    (lambda ()
      (+ 3
         (abort-to-prompt tag 42)))
    (lambda (k early-return-val)
      early-return-val)))
;; => 42



prompts:
early
exit

(define-module (my-module)
  #:use-module (ice-9 control)
  #:export (with-return))

(define-syntax-rule
     (with-return return body ...)
  (let ((t (make-prompt-tag)))
    (define (return . args)
      (apply abort-to-prompt t args))
    (call-with-prompt t
      (lambda () body ...)
      (lambda (k . rvals)
        (apply values rvals)))))



prompts:
early
exit

(use-modules (my-module))

(with-return return
  (+ 3 (return 42)))
;; => 42

(with-return return
  (map return '(1 2 3)))
;; => it depends :)



prompts:
what
about
k?

(use-modules (ice-9 control))

(let ((tag (make-prompt-tag)))
  (call-with-prompt tag
    (lambda () ...)
    (lambda (k . args) ...)))

First argument to handler is
continuation

Continuation is delimited by prompt



prompts:
what
about
k?

(use-modules (ice-9 control))

(define (f)
  (define tag (make-prompt-tag))
  (call-with-prompt tag
   (lambda ()
     (+ 3
        (abort-to-prompt tag)))
   (lambda (k) k)))

(let ((k (f)))
  (list (k 1) (k 2)))
;; => (4 5)



prompts:
what
about
k?

When a delimited continuation
suspends,

the first argument to the handler is

a function that can resume the
continuation.
(let ((k (lambda (x) (+ 3 x))))
  (list (k 1) (k 2)))
;; => (4 5)

(For those of you that know call/cc:
this kicks call/cc in the pants)



prompts
enable
go-
style
concurrency

Suspend “fibers” (like goroutines)
when I/O would block

Resume when I/O can proceed

Ports to share data with world

No need to adapt user code!

E.g. web server just works❧

Channels to share objects with other
fibers



straight
up
network
programs

(define (run-server)
  (match (accept socket)
    ((client . sockaddr)
     (spawn-fiber
      (lambda ()
        (serve-client client)))
     (run-server))))

(define (serve-client client)
  (match (read-line client)
    ((? eof-object?) #t)
    (line
     (put-string client line)
     (put-char client #\newline)
     (serve-client client))))



straight
up
network
programs

50K+ reqs/sec/core (ping)

10K+ reqs/sec/core (HTTP)

Handful of words per fiber

WEB SCALE!?!?!?!?



work
in
progress

Still lots of work to do

work-stealing❧

fairness❧

nice debugging❧

integration into Guile core❧

external event loops❧

https://github.com/wingo/fibers



then
deploy

Use Guix! https://gnu.org/s/guix/

Reproducible, deterministic,
declarative clean builds, in Guile
Scheme

Distribute Guile and all dependent
libraries with your program

Run directly, or build VM, or (in
future) docker container



godspeed! https://gnu.org/s/guile/

#guile on freenode

Share what you make!

@andywingo


