
The Sticky
Mark-Bit
Algorithm
Also an intro to mark-sweep GC

7 Oct 2022 – Igalia

Andy Wingo

Automatic
Memory
Management

“Don’t free, the system will do it for
you”

Eliminate a class of bugs: use-after-
free

Relative to bare malloc/free,
qualitative performance improvements

cheap bump-pointer allocation❧

cheap reclamation/recycling❧

better locality❧

Continuum: bmalloc / tcmalloc grow
towards GC

Automatic
Memory
Management

Two strategies to determine live object
graph

Reference counting❧

Tracing❧

What to do if you trace

Mark, and then sweep or compact❧

Evacuate❧

Tracing O(n) in live object count

Mark-
sweep
GC (1/
3)

freelist := []

allocate():
 if freelist is empty: collect()
 return freelist.pop()

collect():
 mark(get_roots())
 sweep()
 if freelist is empty: abort

Mark-
sweep
GC (2/
3)

mark():
 worklist := []
 for ref in get_roots():
 if mark_one(ref):
 worklist.add(ref)
 while worklist is not empty:
 for ref in trace(worklist.pop()):
 if mark_one(ref):
 worklist.add(ref)

sweep():
 for ref in heap:
 if marked(ref):
 unmark_one(ref)
 else
 freelist.add(ref)

Mark-
sweep
GC (3/
3)

marked := 1

get_tag(ref):
 return *(uintptr_t*)ref
set_tag(ref, tag):
 (uintptr_t)ref = tag

marked(ref):
 return (get_tag(ref) & 1) == marked
mark_one(ref):
 if marked(ref): return false;
 set_tag(ref, (get_tag(ref) & ~1) | marked)
 return true
unmark_one(ref):
 set_tag(ref, (get_tag(ref) ^ 1))

Observations Freelist implementation crucial to
allocation speed

Non-contiguous allocation suboptimal
for locality

World is stopped during collect():
“GC pause”

mark O(n) in live data, sweep O(n) in
total heap size

Touches a lot of memory

Optimization:
rotate
mark
bit

flip():
 marked ^= 1

collect():
 flip()
 mark()
 sweep()
 if freelist is empty: abort

unmark_one(ref):
 pass

Avoid touching mark bits for live data

Reducing
pause
time

Parallel tracing: parallelize mark.
Clear improvement, but speedup
depends on object graph shape (e.g.
linked lists).

Concurrent tracing: mark while your
program is running. Tricky, and not
always a win (“Retrofitting Parallelism
onto OCaml”, ICFP 2020).

qPartial tracing: mark only a
subgraph. Divide space into regions,
record inter-region links, collect one
region only. Overhead to keep track of
inter-region edges.

Generational
GC

Partial tracing

Two spaces: nursery and oldgen

Allocations in nursery (usually)

Objects can be promoted/tenured
from nursery to oldgen

Minor GC: just trace the nursery

Major GC: trace nursery and oldgen

“Objects tend to die young”

Overhead of old-to-new edges offset by
less amortized time spent tracing

Generational
GC

Usual implementation: semispace
nursery and mark-compact oldgen

Tenuring via evacuation from nursery
to oldgen

Excellent locality in nursery

Very cheap allocation (bump-pointer)

But... evacuation requires all incoming
edges to an object to be updated to new
location

Requires precise enumeration of all
edges

JavaScriptCore No precise stack roots, neither in
generated nor C++ code

Compare to V8’s Handle<> in C++,
stack maps in generated code

Stack roots conservative: integers that
happen to hold addresses of objects
treated as object graph edges

(Cheaper implementation strategy, can
eliminate some bugs)

JavaScriptCore Automatic memory management
eliminates use-after-free...

...except when combined with manual
memory management

Prevent type confusion due to reuse of
memory for object of different shape

addrof/fakeobj primitives:
phrack.org/issues/70/3.html

Type-segregated heaps

No evacuation: no generational GC?

Sticky
mark
bit
algorithm

collect(is_major=false):
 if is_major: flip()
 mark(is_major)
 sweep()
 if freelist is empty:
 if is_major: abort
 collect(true)

mark(is_major):
 worklist := []
 if not is_major:
 worklist += remembered_set
 remembered_set := []
 ...

Sticky
mark
bit
algorithm

Mark bit from previous trace “sticky”:
avoid flip for minor collections

Consequence: old objects not traced, as
they are already marked

Old-to-young edges: the “remembered
set”

Write barrier
write_field(object, offset, value):
 remember(object)
 object[offset] = value

JavaScriptCore Parallel GC: Multiple collector threads
Concurrent GC: mark runs while JS
program running; “riptide”;
interaction with write barriers

Generational GC: in-place, non-
moving GC generational via sticky
mark bit algorithm

Alan Demers, “Combining generational
and conservative garbage collection:
framework and implementations”,
POPL ’90

Conclusions A little-used algorithm

Motivation for JSC: conservative roots

Original motivation: conservative
roots; write barrier enforced by OS-
level page protections

Revived in “Sticky Immix”

Better than nothing, not quite as good
as semi-space nursery

Other
considerations

The following slides are just things to
think about

Sweeping Sweeping still O(n): get it out of
collect

Lazy sweeping: sweep as needed, in
allocate instead of collect; good
locality

Concurrent sweeping: sweep in a
thread

Allocation Dynamically switch between freelist
and bump-pointer depending on
fragmentation

Mitigate freelist overhead by
preallocating in thread pools? Manuel
Serrano, “Of JavaScript AOT
Compilation Performance”, ICFP 2021

Mutator
overhead

Representation of remembered set:
card table, array, conditional or not, ...

Elide write barrier when source object
known to be young, e.g. during
initialization

Coalesce barriers for multiple writes

Avoid read barriers at all costs

Tracing How to handle mark stack (worklist)
overflow

Inline or out-of-line mark bits

Multiple colors for concurrent marking

“Slop”: objects you could have
collected if you did a STW full GC, but
didn’t

Heuristics: when to pause

Parallel
mutators

Not an issue for JavaScriptCore p
Otherwise can be very tricky

Other Heap iterability

Support conservative roots via is-an-
object predicate

