
Production
Snabb
Simple, fast software networking
functions with Snabb

21 June 2017 – SDN Barcelona

Andy Wingo wingo@igalia.com

@andywingo

hey
network
hackers

Agenda:

Snabb, a VNF workbench❧

Recent developments❧

Some batteries included: Snabb
in practice

❧

the
domain

Commodity hardware is capable of
high-performance networking

1 core at 15MPPS: 65ns/packet❧

What software to put on the
hardware?

alternate
(hi)story

The teleology of open source: “one
day this will all run Linux”

Conventional wisdom: if I walk the
racks of a big ISP, it’s probably all
Linux

linux? The teleology of open source: “one
day this will all run Linux”

Conventional wisdom: if I walk the
racks of a big ISP, it’s probably all
Linux

Q: The hardware is ready for 10 Gbps
on a core. Is Linux?

not
linux

The teleology of open source: “one
day this will all run Linux”

Conventional wisdom: if I walk the
racks of a big ISP, it’s probably all
Linux

Q: The hardware is ready for 10 Gbps
on a core. Is Linux?

A: Nope

why
not
linux

Heavyweight networking stack

System/user barrier splits your
single network function into two
programs

Associated costs both at
development-time and run-time

user-
space
networking

Cut Linux-the-kernel out of the
picture; bring up card from user
space

tell Linux to forget about this PCI
device

❧

mmap device’s PCI registers into
address space

❧

poke registers as needed❧

set up a ring buffer for receive/
transmit

❧

profit!❧

user-
space
networking

Multiple open source user-space
networking projects having success

Prominent examples:

Snabb (2012)❧

DPDK (2012)❧

VPP/fd.io (2016)❧

(Is this SDN? :))

How do software network functions
work?

aside Snabb aims to be rewritable software

The hard part: searching program-
space for elegant hacks

“Is that all? I could rewrite that in a
weekend.”

nutshell A snabb program consists of a graph
of apps
Apps are connected by directional
links
A snabb program processes packets
in units of breaths

local Intel82599 =
 require("apps.intel.intel_app").Intel82599
local PcapFilter =
 require("apps.packet_filter.pcap_filter").PcapFilter

local c = config.new()
config.app(c, "nic", Intel82599, {pciaddr="82:00.0"})
config.app(c, "filter", PcapFilter, {filter="tcp port 80"})

config.link(c, "nic.tx -> filter.input")
config.link(c, "filter.output -> nic.rx")

engine.configure(c)

while true do engine.breathe() end

breaths Each breath has two phases:

inhale a batch of packets into the
network

❧

process those packets❧

To inhale, run pull functions on
apps that have them

To process, run push functions on
apps that have them

Pull function of included Intel 82599 driver

function Intel82599:pull ()
 for i = 1, engine.pull_npackets do
 if not self.dev:can_receive() then
 break
 end
 local pkt = self.dev:receive()
 link.transmit(self.output.tx, pkt)
 end
end

Push function of included PcapFilter

function PcapFilter:push ()
 while not link.empty(self.input.rx) do
 local p = link.receive(self.input.rx)
 if self.accept_fn(p.data, p.length) then
 link.transmit(self.output.tx, p)
 else
 packet.free(p)
 end
 end
end

packets struct packet {
 uint16_t length;
 unsigned char data[10*1024];
};

links struct link {
 struct packet *packets[1024];
 // the next element to be read
 int read;
 // the next element to be written
 int write;
};
// (Some statistics counters elided)

voilà At this point, you can rewrite Snabb

(Please do!)

But you might want to use it as-is...

inventory apps: software components that
developers compose into network
functions

programs: complete network
functions

bold: new in 2016/2017

italics: not yet merged to mainline

app
catalog:
i/o

Intel i210/i350/82599/XL710
Mellanox ConnectX-4/5
VirtIO host and guest

UNIX socket

Linux: tap and “raw” (e.g. eth0)

Pcap files

app
catalog:
l2

Flooding and learning bridges

VLAN insert/filter-and-remove/mux

ARP / NDP

app
catalog:
l3

IPv4/v6 fragmentation and
reassembly

IPv4/v6 splitter

ICMPv4/v6 echo responder

Control plane delegation (nh_fwd)

(No routing yet)

app
catalog:
transport

IPsec ESP

Lightweight 4-over-6 AFTR

“Keyed IPv6 Tunnel” (draftr-
mkonstan-keyed-ipv6-tunnel-01)

app
catalog:
monitoring

Netflow capture and export
L7 monitor / filter (using libndpi)

pcap filter (with machine-code
backend)

app
catalog:
testing

Many workload generators

programs $ git clone \
 https://github.com/SnabbCo/snabb
$ cd snabb
$ make

$ src/snabb
Usage: src/snabb <program> ...

This snabb executable has the following programs built in:
 lisper
 lwaftr
 packetblaster
 pci_bind
 snabbmark
 snabbnfv
 snabbvmx
 snsh
 top
 wall

For detailed usage of any program run:
 snabb <program> --help

program:
packet
blaster

Generally useful tool: fill TX buffer
of NIC with packets and transmit
them over and over again
snabb packetblaster replay \
 packets.pcap 82:00.1

Measures received (return) traffic
too

Easily saturates 10G links

program:
lwaftr

“Lightweight 4-over-6”: RFC 7596

Snabb-implemented border router
for lw4o6

IPv4 for entire countries!

Remarkable deployment report from
OTE engineer Kostas Zordabelos,
April 2017:

https://www.youtube.com/
watch?v=EEpUWieTr40&t=1h46m

program:
lwaftr

Why Snabb?

Fast, fluid development

RFC only finalized during
development

❧

Good speed

Open source

Cheap

program:
nfv

Host switch providing network
connectivity to QEMU instances

“Original” Snabb app

Like Open vSwitch with DPDK data-
path, or OpenContrail

OpenStack integration never
landed... but the market has moved
on

(Has the market moved on from
classic NFV?)

program:
vmx

Idea: Snabb data plane, external
control and management planes

Contributed by Juniper engineer
Marcel Wiget

Possibility to delegate to Juniper
vMX to determine next hops; or to
an image with Linux

Juniper Tech Club, March 2017:
https://www.youtube.com/
watch?v=N_CjXgyrUcY

snabb snabbvmx lwaftr --help

program:
snabbwall

L7 firewall that optionally uses nDPI

http://snabbwall.org/

Collaboration between Igalia and
NLnet foundation

Landed upstream in 2017

program:
ipfix

Prototype NETFLOW collector and
exporter (v9 and IPFIX)

Currently only 5MPPS, working on
single-core improvements then
moving to RSS

Pending to land upstream

program:
l2vpn

Alexander Gall’s L2 VPN over IPv6

Pending to land upstream; used in
production AFAIU

Ideal Snabb use case: programmer-
operator builds bespoke tool

programs:
your
vnf
here

Snabb upstream open to include new
network functions

Repository will grow as people build
new things

Igalia can build one for you :)

deploy From prototype to production: what
do you need?

(Re)configurability

State monitoring

snabb
config

YANG is great!!!

Native YANG support in Snabb

Load and serialize textual
configurations

❧

Compiled compilations (useful
for big routing tables)

❧

Incremental update❧

State query❧

snabb
config

App & link graph a function of config

Update config? Diff graphs, apply
incremental changes

Carefully built to scale

Fast-paths for some incremental
updates, e.g. add lwAFTR
softwire

❧

Config/state query avoids
touching data plane process

❧

Updates cause minimal change❧

Subquery built-in❧

snabb
config

Command-line tool, snabb config

NETCONF via Sysrepo bridge

Other configuration agents possible

near
future

100G in production Snabb

Multiple coordinated data-plane
processes

Horizontal scaling via BGP/ECMP:
terabit lw4o6 deployments

Performance x-ray: where to focus
effort to improve speed?

[Your cool hack here!]

Work in progress!

thanks! Make a thing with Snabb!
git clone https://github.com/SnabbCo/snabb
cd snabb
make

wingo@igalia.com

@andywingo

oh no here comes the hidden track!

Storytime! Modern x86: who’s winning?

Clock speed same since years ago

Main memory just as far away

HPC
people
are
winning

“We need to do work on data... but
there’s just so much of it and it’s
really far away.”

Three primary improvements:

CPU can work on more data per
cycle, once data in registers

❧

CPU can load more data per
cycle, once it’s in cache

❧

CPU can make more parallel
fetches to L3 and RAM at once

❧

Networking
folks
can
win
too

Instead of chasing zero-copy, tying
yourself to ever-more-proprietary
features of your NIC, just take the hit
once: DDIO into L3.

Copy if you need to – copies with L3
not expensive.

Software will eat the world!

Networking
folks
can
win
too

Once in L3, you have:

wide loads and stores via AVX2
and soon AVX-512 (64 bytes!)

❧

pretty good instruction-level
parallelism: up to 16 concurrent
L2 misses per core on haswell

❧

wide SIMD: checksum in
software!

❧

software, not firmware❧

