
Old Dog, New Tricks
A Schemer’s Guide to JavaScript
Implementations

Quasiconf 2012

Andy Wingo



wingo@igalia.com

Compiler hacker at Igalia

Contract work on language implementations

V8, JavaScriptCore

Schemer



Scheme in one slide

Parse.

Expand.

Optimize.

Codegen.

Run.



JavaScript in one slide

Pre-parse.

Run.

Parse.

Codegen.

Run.

Optimize.

Codegen.

Run.

...



On optimization

Proof-driven program transformation

Scheme: Static proofs derived from
interprocedural flow analysis

JS: Dynamic proofs based on run-time
observations, with ability to invalidate
transformations if assumptions fail to hold



Barriers to optimization in
Scheme

Mutable toplevels

Separate compilation

Incomplete type information

No information on what to inline

call/cc



None of these inhibit
JavaScript

Assume toplevels are immutable

No real separate compilation

A wealth of type information

Dynamic profiling identifies inline candidates

No call/cc



“Adaptive optimization”

Types and hot spots not known until runtime

Types and hot spots can change over time

Assumptions can be invalidated over time

Adaptive optimization: speculative optimization
with bailout



Deoptimization for debugging

Allow multi-leveled inlining and code motion
while preserving programmer’s mental model of
how evaluation works

Deoptimization already required by speculation
failures



Other common JS
optimizations

Unboxing

Common subexpression elimination

Loop invariant code motion (or loop peeling +
CSE)

Range inference

Register allocation

Block reordering (?)

But to be clear: dynamic inlining is the big one



Different deployment models

Scheme implementations rarely run attacker- -
controlled code

JS: Constant blinding to prevent vulnerabilities
in non-JS code from using JS as a heap-spray

No threads in JS



Representation hacks

JS: NaN-boxing, sometimes

Rope strings



Dedicated regexp compilers

Matching word-at-a-time, hard to beat with a
general compiler



Lazy tear-off in JSC

A static scope implementation trick



Implementing static scope

Chains: Activations on heap (!)

Closure creation: O(1) space and time❧

Free var access: O(n) time❧

Not “safe for space”❧

Displays: Activations on stack

Closure creation: O(n) space and time❧

Free var access: O(1) time❧

Mutated variables usually boxed❧



Lazy tear-off in JavaScriptCore

Activations on stack

Only allocate scope chain node if closure is
captured

When control leaves function, tear off stack to
heap, relocating pointer in scope node (no
threads in JS)

Memory advantages of chains with stack
discipline of display closures

Free var access still O(n) but inlinable



Living with eval

Eval only evil if it defines new locals
var foo = 10;

function f(s){ eval(s); return foo; }

f('var foo=20;') ⇒ 20

Otherwise great: a compiler available to the user

Functions in which eval appears not fully
optimizable: must expose symbol tables



Inline caches

Per-caller memoization, in code

Fundamental optimization for property access

Not as needed in Scheme because not much
polymorphism

Can allow efficient generic arithmetic

Can make CLOS-style generics more efficient

Clojure-like sequence protocols

Function application?



Dealing with the devil

Runtime codegen in JS has a price: C++

Most Scheme implementations are self-hosted,
with AOT compiler already

Challenge: add adaptive optimization to existing
Scheme implementation

Requires good AOT compiler!



JS can change the way we code

Scheme’s static implementations encourage
static programming

define-integrable

(declare (type fixnum x))

(declare (safety 0) (speed 3))

(declare (usual-integrations))

include instead of load

Adaptive optimization can bring back
dynamicity



Summary

In Smart vs Lazy, Schemers always chose Smart

A bit of laziness won’t hurt

Adaptive optimization in Scheme!



questions?

Work: http://www.igalia.com/compilers❧

Words: http://wingolog.org/❧

Slides: http://wingolog.org/pub/qc-2012-
js-slides.pdf

❧

Notes: http://wingolog.org/pub/qc-2012-
js-notes.pdf

❧


