
A walk on the weird
side
Opaque WebAssembly values and LLVM

LLVM Developers’ Meeting 2021

Andy Wingo | wingo@igalia.com

Paulo Matos | pmatos@igalia.com

Agenda A quick recap on how LLVM targets WebAssembly

A spanner in the works: opaque host-managed values

LLVM on the weird side

The
WebAssembly
machine

Harvard architecture: linear memory for data, separated
from code

Code structured as well-typed functions

Host manages call stack; return addrs inaccessible

Local variables not addressable

https://webassembly.github.io/spec/core/syntax/
types.html

numtype ::= i32 | i64 | f32 | f64

valtype ::= numtype

functype ::= valtype*⇒ valtype*

func := {type: functype, locals: valtype*, body: expr}

module := {funcs: func*, memories:mem*, imports: functype*,
exports: func-index*...}

The LLVM
WebAssembly
target

void f() { int i = g(); ... }

%iloc = alloca i32
%t = call i32 @g()
store i32 %t, i32* %iloc

(SROA may eliminate %iloc)

SSA variables lower as “managed” WebAssembly function
locals and temporaries

.functype g () -> (i32)

f:
 .functype f () -> ()
 .local i32
 call g
 local.set 0
 ...

Otherwise alloca lowers as stack allocation - linear memory
partitioned into stack, data, heap

New
developments
in
WebAssembly

https://webassembly.github.io/spec/core/syntax/
types.html

numtype ::= i32 | i64 | f32 | f64

reftype ::= externref | funcref

valtype ::= numtype | reftype

functype ::= valtype*⇒ valtype*

func ::= {type: functype, locals: valtype*, body: expr}

externref (& funcref) opaque, host-managed values

Only numtype can be stored to linear memory, not reftype

Use: GC-managed data, host objects (FILE*, JavaScript, ...)

New problems
for LLVM

IR: Types, SSA values, intrinsics, lowering❧

Clang: Alloca, the user experience❧

Compiler writers’ full employment act still in effect

IR & externref The hack at the heart of things:

%extern = type opaque
%externref = type %extern addrspace(10)*

MVT getPointerTy(const DataLayout &DL,
 uint32_t AS = 0) const override {
 if (AS == WasmAddressSpace::EXTERNREF)
 return MVT::externref;
 if (AS == WasmAddressSpace::FUNCREF)
 return MVT::funcref;
 return TargetLowering::getPointerTy(DL, AS);
}

Horribly effective

How to
program
externref?

void f() { externref_t v = g(); }

%vloc = alloca ? ; ??????

struct { int a; externref_t b; } v; // ?

Not obvious!

Smells like
SVE spirit...

Scalable vectors (e.g. SVE) introduce notion of sizeless types:
same restrictions on use as incomplete types, plus a couple
others

Semantics defined in ARM C Language Extensions (ACLE)

Sema applies ACLE restrictions for SVE values

externref piggy-backs on these restrictions

...with subtle
notes of weird

SVE values do have byte representation, externref does not

Not “unknown size in memory” but rather “can’t be put in
linear memory”

No inttoptr will ever address an externref; ptrtoint
meaningless

New restriction for frontend: no address-of on reference
types

%vloc = alloca ? ; ??????

Our solution Another friggin address space

%iloc = alloca i32, addrspace(0)

%extern = type opaque
%externref = type %extern addrspace(10)*
%vloc = alloca %externref, addrspace(1)

SROA can still lift to SSA

If static alloca in addrspace 1 reaches backend, it lowers to
(mutable) function local, not linear memory

Clang never issues non-static alloca in addrspace 1

Initial idea of exposing “wasm function local address space”
to user inspired by e.g. __global from OpenCL – but
unnecessarily broad

Current approach is typed-based❧

Some points remaining to iron out❧

Status IR: Done, essentially

Clang: In progress. Delicate.

Goal: Allow host gc-managed aggregate types; leak-free JS/
C++ systems in web runtimes

Thanks for listening, and for reviewer patience for a very
weird machine!

https://github.com/Igalia/ref-cpp

