
Whippet: A practical
memory management
upgrade for Guile &
beyond
2 February 2025 – FOSDEM ’25

AndyWingo

Igalia, S.L.

Agenda The big idea❧

The results❧

The future❧

The big idea Whippet is a practical memory
management upgrade for Guile &
beyond

A practical
memory
management
upgrade for
Guile &
beyond

struct gc_options *options = NULL;
struct gc_stack_addr *stack_base = NULL;
struct gc_heap *heap;
struct gc_mutator *mut;
void *event_listener_data = NULL;

gc_init(options, stack_addr, &heap, &mut,
 GC_NULL_EVENT_LISTENER, event_listener_data);

void *obj = gc_allocate(mut, 42);

options = gc_allocate_options();
gc_options_parse_and_set_many(options,
 getenv("GC_OPTIONS"));

struct gc_mutator_roots roots; // Embedder-defined
gc_mutator_set_roots(mut, &roots);

// For generational configurations
gc_write_barrier(mut, obj, obj_size, edge, new_val);

// For cooperative safepoints
gc_safepoint(mut);

// For collectors that don't require copying
gc_pin_object(mut, ref);

static inline void
gc_trace_object(struct gc_ref ref,
 void (*visit)(struct gc_edge edge,
 struct gc_heap *heap,
 void *visit_data),
 struct gc_heap *heap,
 void *trace_data,
 size_t *size) { /* ... */ }

static inline void
gc_trace_mutator_roots(struct gc_mutator_roots *roots,
 void (*trace_edge)(struct gc_edge edge,
 struct gc_heap *heap,
 void *trace_data),
 struct gc_heap *heap,
 void *trace_data) { /* ... */ }

A practical
memory
management
upgrade for
Guile &
beyond

Whippet: An
upgrade
relative to
BDW-GC

Performance: Bump-pointer allocation,
better parallelism

Features: Ephemerons and finalizers
that work

Behavior: Choice of workload-
appropriate collectors

Memory use: Compaction, adaptive
heap sizing (membalancer)

Whippet: An
upgrade with
a migration
path

Bridge, n.: Construction with two ends
and a path in between

Whippet: a GC library with compile-
time abstraction over embedder needs
and collector construction

Collector variants: MMC, PCC, BDW

MMC collector has optional
conservative tracing

stack roots❧

global roots❧

(optionally) intra-heap edges❧

MMC Mostly-marking collector

MMC = nofl space + lospace

Nofl space “No free-list”

For objects less than 8192 bytes

Bump-pointer allocation

Excellent parallelism

Mostly-marking (Immix-derived),
occasionally compacting

12% overhead

Pinning (transitively due to
conservative roots, or permanently)

Optionally generational (sticky-mark)

Lospace “Large object space”

mmap allocation, freelist, deferred
release

Optionally generational (sticky-mark)

Whippet: An
upgrade
relative to
bespoke GCs

Language run-times often get stuck
with their GC

Whippet’s compile-time API
abstraction enables evolution

PCC Parallel copying collector

PCC = copy space + lospace

Copy space For objects less than 8192 bytes

Bump-pointer allocation

Excellent parallelism

Always compacting

100% overhead

Generational
PCC

Generational PCC = copy space + copy
space + lospace

2 MB nursery per processor active in
last cycle

1 survivor cycle for copy space, 0 for
lospace

Field-logging write barrier

Nursery memory range aligned, can be
quick XOR check

Still has 100% overhead

BDW Boehm-Demers-Weiser collector

Shim behind Whippet API

Different safepoint behavior: not
cooperative

No support for gc_trace_object

Not great parallelism

Higher memory overhead than MMC

A practical
memory
management
upgrade for
Guile &
beyond

Embed-only

No dependencies

C11

Hackable

Practical
testbench:
Whiffle

Scheme-to-C compiler: https://
github.com/wingo/whiffle

Ensure Whippet offers appropriate
API for embedders

❧

Allow more test cases to be written
before moving to Guile

❧

Handles vs stack maps❧

Main motivation was testing; shook
out many bugs

A practical
memory
management
upgrade for
Guile &
beyond

The pivot:

Whippet API, but BDW collector❧

MMC collector, with conservative
roots

❧

Generational MMC collector (write
barriers)

❧

Evacuating nursery?❧

Shout-out to NLnet foundation for
helping us with this work!

A practical
memory
management
upgrade for
Guile &
beyond

WebAssembly+GC-to-C: Enable
standalone Guile compilation via Hoot ?

Ocaml, R, etc...

Results:
What do we
win with
Whippet?

Strict throughput improvements: 20-
40%

Access to smaller heap sizes: 30-50%

Results:
What do we
learn with
Whippet?

Conservative root-finding is OK

Generational GC is complicated, more
tuning needed

Future Guile, finally. This month!!!

Your language run-time?

Concurrent marking

LXR-inspired reference counting of old
generation?

Try it out! https://github.com/wingo/whippet

https://github.com/wingo/whiffle

https://nlnet.nl/project/Whippet/

wingo@igalia.com

Thanks!

Attic

New since
2023

PCC, generational PCC, precise field-
logging write barriers instead of card
marking, better parallelism, bug fixes,
embeddability, finalizers, dynamic
heap sizing (membalancer), less VMM
traffic, whiffle, tests, nlnet, platform
abstraction, options interface, extern
space, stats, HDR histogram,
renamings, nofl more eager

