
Whippet: A New
GC for Guile
4 Feb 2023 – FOSDEM

Andy Wingo



Guile
is...

Mostly written in Scheme

Also a 30 year old C library
// API
SCM scm_cons (SCM car, SCM cdr);

// Many third-party users
SCM x = scm_cons (a, b);



Putting
the C
into GC

SCM x = scm_cons (a, b);

Live objects: the roots, plus anything a
live object refers to

How to include x into roots?

Refcounting❧

Register (& later unregister) &x
with gc

❧

Conservative roots❧



Conservative
roots

Treat every word in stack as potential
root; over-approximate live object set

1993: Bespoke GC inherited from SCM

2006 (1.8): Added pthreads, bugs

2009 (2.0): Switch to BDW-GC

BDW-GC: Roots also from extern SCM
foo;, etc



Conservative
roots

+: Ergonomic, eliminates class of bugs
(handle registration), no compiler
constraints

-: Potential leakage, no compaction /
object motion; no bump-pointer
allocation, calcifies GC choice



What if
I told
you

You can find roots conservatively and

move objects and compact the heap❧

do fast bump-pointer allocation❧

incrementally migrate to precise
roots

❧

BDW is not the local maximum



Immix Fundamental GC algorithms

mark-compact❧

mark-sweep❧

evacuation❧

mark-region❧

Immix is a mark-region collector



Allocate: Bump-pointer into holes in thread-local block,
objects can span lines but not blocks

Trace: Mark objects and lines

Sweep: Coarse eager scan over line mark bytes



Immix:
Opportunistic
evacuation

Before trace, determine if compaction
needed. If not, mark as usual

If so, select candidate blocks and
evacuation target blocks. When tracing
in that block, try to evacuate, fall back
to mark



Immix:
Guile

Opportunistic evacuation compatible
with conservative roots!

Bump-pointer allocation

Compaction!

1 year ago: start work onWIP GC
implementation



Whippet
vs
Immix:
Tiny
lines

Immix: 128B lines + mark bit in object

Whippet: 16B “lines”; mark byte in
side table

More size overhead: 1/16 vs 1/128

Less fragmentation (1 live obj = 2 lines
retained)

More alloc overhead? More small
holes



Whippet
vs
Immix:
Lazy
sweeping

Immix: “cheap” eager coarse sweep

Whippet: just-in-time lazy fine-grained
sweep

Corrolary: Data computed by sweep
available when sweep complete

Live data at previous GC only known
before next GC

Empty blocks discovered by sweeping



Whippet
vs BDW

Compaction/defrag/pinning, heap
shrinking, sticky-mark generational
GC, threads/contention/allocation,
ephemerons, precision, tools



Whippet
vs
BDW:
Motion

Heap-conservative tracing: no object
moveable

Stack-conservative tracing: stack
referents pinned, others not

Whippet: If whole-heap fragmentation
exceeds threshold, evacuate most-
fragmented blocks

Stack roots scanned first; marked
instead of evacuated, implicitly pinned

Explicit pinning: bit in mark byte



Whippet
vs
BDW:
Shrinking

Lazy sweeping finds empty blocks:
potentially give back to OS

Need empty blocks? Do evacuating
collection

Possibility to do adaptive heap size
management (http://marisa.moe/
balancer.html)



https://wingolog.org/archives/2022/10/22/the-
sticky-mark-bit-algorithm

Card marking barrier (256B); compare to BDWmprotect /
SIGSEGV



Whippet
vs
BDW:
Scale

BDW: TLS segregated-size freelists,
lock to refill freelists, SIGPWR for stop

Whippet: thread-local block, sweep
without contention, wait-free
acquisition of next block, safepoints to
stop with ragged marking

Both: parallel markers









Whippet
vs
BDW:
Ephemerons

BDW: No ephemerons (link)

Whippet: Yes



Whippet
vs
BDW:
Precision

BDW: ~Always stack-conservative,
often heap-conservative

Whippet: Fully configurable (at
compile-time)

Guile in mid/near-term: C-stack-
consrvative, Scheme stack precise,
heap-precise

Possibly fully precise: unlock semi-
space nursery



Whippet
vs
BDW:
Tools?

Can build heap tracers and profilers
moer easily

More hackable

(BDW-GC has as many preprocessor
directives as whippet has source lines)



Engineering
Whippet

Embed-only, abstractions, migration,
modern; timeline



Engineering
Whippet:
Embed-
only

https://github.com/wingo/whippet-
gc/

Semi: 6 kB; Whippet: 22 kB; BDW: 184
kB

Compile-time specialization:

for embedder (e.g. how to forward
objects)

❧

for selected GC algorithm (e.g.
semi-space vs whippet)

❧

Built apart, but with LTO to remove
library overhead



Engineering
Whippet:
Abstract
performance

User API abstracts over GC algorithm,
e.g. semi-space or whippet

Expose enough info to allow JIT to
open-code fast paths

Inspired by https://mmtk.io

Abstractions permit change: of
algorithm, over time



Engineering
Whippet:
Migration

API implementable by BDW-GC
(except ephemerons)

First step for Guile: BDW behind
Whippet API

Then switch to whippet/immix (by
default)





Engineering
Whippet:
Modern

stdatomic

constexpr-ish

pthreads (for parallel markers)

No void*; instead struct types:
gc_ref, gc_edge,
gc_conservative_ref, etc

Embed-only lib avoids any returns-
struct-by-value ABI issue

Rust? MMTk; supply chain concerns

Platform abstraction for conservative
root finding



Engineering
Whippet:
Timeline

As time permits

Whippet TODO: heap growth/
shrinking, finalizers, safepoint API

Guile TODO: safepoints; heap-
conservative first

Precise heap TODO: gc_trace_object,
SMOBs, user structs with raw ptr
fields, user gc_malloc usage; 3.2

6 months for 3.1.1; 12 for 3.2.0 ?



Whippet:
A
Better
GC?

An Immix-derived GC

https://github.com/wingo/whippet-
gc/

https://wingolog.org/tags/gc/

Guile 3.2 ?

Thanks to MMTk authors for
inspiration!




