
Wastrel:
WebAssembly
sans runtime
1 February 2026 – FOSDEM ’26

AndyWingo

Igalia, S.L.

Demo

Storytime Longtime Guile co-maintainer

Guile uses BDW-GC; very reliable but
suboptimal

Bad multi-threaded mutator perf❧

High baseline memory usage❧

Can’t compact❧

Always wanted to write a gc

Heard of Immix (2008): GC algorithm
that can evacuate or leave objects in
place

In which a
Whippet

An embeddable GC library inspired by
Immix

Vendor it in your C projects

No deps

Specialized to needs of embedder at
compile-time

Object representation❧

Tracing procedures❧

Root finding❧

Collection of collectors

Whippet
demo

wastrel compile --gc=help

Whippet’s
collector
collection

pcc: Parallel copying collector
(possibly generational not)

mmc: Mostly-marking collector
(possibly generational, conservative...)

bdw: Boehm-Demers-Weiser (BDW)
(conservative)

WhyWhippet Pitch: mmc improves upon bdw

access tighter heaps❧

scale better for multiple mutator
threads

❧

can compact❧

Thanks to NLnet, Igalia for support

https://nlnet.nl/project/Whippet/

https://arxiv.org/abs/2503.16971

Whippet
Where

Whippet was made for Guile

wip-whippet, ~350 commits, April to
August 2025

Needs incremental merging via
Codeberg, for Guile 4.0 push

Strategy:

Rebase on Whippet API; bdw❧

heap-conservative mmc❧

heap-precise mmc❧

Talk tomorrow at Guix days?

Wastrel Remember Wastrel

This a talk about Wastrel

Wastrel Wastrel is a Wasm-to-C compiler, with
Whippet

Wasm-to-C Prior art: wasm2c, w2c2

Core compiler builds on Guile Hoot’s
Wasm libs

Performance: Best-in-class

Memory safety: 8 GB PROT_NONE region

Aside: C best
practices

Lean into type system and optimizer

Never cast/convert implicitly. rarely
cast at all

Use memcpy to read and write

Static inline functions, data structs

Avoid bare integers (uintptr_t, int,
etc)

If you do it right, generated code bears
proof of behavior embodied by source
wasm types; GCC checks your work

(also -Wconversion, UBSAN, etc)

Standard
library

clang --target=wasm32-wasip1 -o main main.c

Requires WASI-SDK

Implementing WASI in Wastrel: 2
weeks. Awful. Aggregate data
encoding terrible, have to be very
careful about memory reads/writes

Filesystem sandbox via Linux
namespaces

GC Wasm 1.0: Linear memory

Wasm 3.0: Linear memory +
exceptions + managed memory + ...
(type $pair (struct (ref eq) (ref eq)))
(func $cons (param $a (ref eq))
 (param $b (ref eq))
 (result (ref $pair))
 (struct.new $pair
 (local.get $a) (local.get $b)))

Arrays, structs, subtyping, type
recursion, typed function references,
31-bit immediates, static and dynamic
casts, memory safety

Adding GC to
Wastrel

Hell: difficult to translate Wasm types
to C in presence of subtyping, three
type lattices.

Heaven too: generated C carries types
from source.

Base types
// Assume typedefs, e.g. "typedef struct anyref {...} anyref"
struct anyref { uintptr_t value; };
struct eqref { anyref p; };
struct i31ref { eqref p; };
struct arrayref { eqref p; };
struct structref { eqref p; };

struct externref { uintptr_t value; };

struct funcref { void *value; uint32_t type; };

struct wasm_obj { uintptr_t tag_word; };
struct wasm_array { struct wasm_obj p; uint32_t len; };
struct wasm_struct { struct wasm_obj p; };

Base types
// Assume static inline
int is_null(anyref ref) { return ref.value == 0; }
int is_imm(anyref ref) { return (ref.value & 1) == 1; }

wasm_obj* any_obj(anyref ref) {
 assert(!is_null(ref) && !is_imm(ref));
 return (wasm_obj*) ref.value;
}

Let’s step through generated C
(type $type_0
 (struct i32))

(rec
 (type $type_1
 (sub $type_0 (struct i32 (ref $type1)))))

Generated types; tags assigned via depth-first search
struct type_0ref { structref p; };
struct type_1ref { type_0ref p; };

struct type_0 { wasm_struct p; int32_t f0; };
struct type_1 { type_0 p; type_1ref f1; };

int is_type_0(anyref ref) {
 wasm_obj *obj = any_obj(ref);
 uint32_t tag = ((uint32_t) obj->tag_word) >> 1;
 return 0 <= tag && tag < 2;
}

No handles; stack/registers conservatively traced, pinned
static type_1ref pack_type_1(type_1 *obj) {
 // Oh yeah baby
 return (type_1ref){{{{{(uintptr_t)obj}}}}};
}

static type_1ref
make_type_1(struct gc_mutator *mut, int32_t f0, type_1ref f1) {
 type_1 *ret =
 gc_allocate(mut, sizeof(type_1), GC_ALLOCATION_TAGGED);
 ret->p.p.p.tag_word = 1 << 1;
 ret->p.f0 = f0;
 ret->f1 = f1;
 return pack_type_1(ret);
}

Capabilities Ad-hoc selection of stdlib imports (e.g.
(import "debug" "debug_str"));

Going to build out Hoot stdlib shortly:
bignums, etc

Wastrel can implement extensions, e.g.
stringref or stringref support

Can still access WASI capability, but
impedance mismatch with linear
memory

Status Demo-ware

codeberg.org/andywingo/wastrel/
issues/

What’s next? Happy to implement more stdlib for
OCaml, etc

Guile-to-native

Benchmarking: prove mostly-marking
collector performance against real
programs

Feature completeness (e.g. exceptions)

Fix to enable FS sandbox with GC

Implement newWasm standards
(stack switching!!!)

Help evolve Wasm standards

Call to
action™

Writing a new language? Consider
targetting WasmGC!

wingolog.org/archives/2014/11/
27/scheme-workshop-2014/

❧

Targetting WasmGC? Let’s make
native binaries together!

codeberg.org/andywingo/
wastrel/

❧

Need a GC? Let’s talk!

github.com/wingo/whippet/❧

