Wastrel:

WebAssembly
sans runtime

1 February 2026 - FOSDEM 26
Andy Wingo

[galia, S.L.

Demo

Storytime

Longtime Guile co-maintainer

Guile uses BDW-GC; very reliable but
suboptimal

 Bad multi-threaded mutator perf
-+ High baseline memory usage
 Can’t compact

Always wanted to write a gc

Heard of Immix (2008): GC algorithm
that can evacuate or leave objects in
place

In which a An embeddable GC library inspired by
Whippet Immix

Vendor it in your C projects
No deps

Specialized to needs of embedder at
compile-time

a QObject representation
a Tracing procedures
 Root finding

Collection of collectors

Whlppet wastrel compile --gc=help
demo

Whippet's pcc: Parallel copying collector
collector (possibly generational not)

collection mmc: Mostly-marking collector
(possibly generational, conservative...)

bdw: Boehm-Demers-Weiser (BDW)
(conservative)

Why Whippet Pitch: mmc improves upon bdw
4 gccess tighter heaps

2 scale better for multiple mutator
threads

4 can compact

Thanks to NLnet, Igalia for support
https://nlnet.nl/project/Whippet/
https://arxiv.org/abs/2503.16971

Whippet Whippet was made for Guile

Where wip-whippet, ~350 commits, April to
August 2025

Needs incremental merging via
Codeberg, for Guile 4.0 push

Strategy:

= Rebase on Whippet API; bdw
¢ heap-conservative mmc

¢ heap-precise mmc

Talk tomorrow at Guix days?

Wastrel Remember Wastrel
This a talk about Wastrel

Wastrel Wastrel is a Wasm-to-C compiler, with
Whippet

Wasm-to-_C Prior art: wasm2c, w2c2

Core compiler builds on Guile Hoot’s
Wasm libs

Performance: Best-in-class
Memory safety: 8 GB PROT_NONE region

Aside: C best
practices

Lean into type system and optimizer

Never cast/convert implicitly. rarely
cast at all

Use memcpy to read and write
Static inline functions, data structs

Avoid bare integers (uintptr_t, int,
etc)

[f you do it right, generated code bears
proof of behavior embodied by source
wasm types; GCC checks your work

(also -Wconversion, UBSAN, etc)

Standard clang --target=wasm32-wasipl -o main main.

library Requires WASI-SDK

Implementing WASI in Wastrel: 2
weeks. Awful. Aggregate data
encoding terrible, have to be very
careful about memory reads/writes

Filesystem sandbox via Linux
namespaces

GC

Wasm 1.0: Linear memory

Wasm 3.0: Linear memory +
exceptions + managed memory + ...
(type $pair (struct (ref eq) (ref eq)))
(func $cons (param $a (ref eq))

(param $b (ref eq))

(result (ref $pair))
(struct.new $pair

(local.get %$a) (local.get $b)))

Arrays, structs, subtyping, type
recursion, typed function references,
31-bit immediates, static and dynamic
casts, memory safety

Adding GC to Hell: difficult to translate Wasm types
Wastrel to C in presence of subtyping, three
type lattices.

Heaven too: generated C carries types
from source.

Base types

// Assume typedefs, e.g. "typedef struct anyref {...} anyref”
struct anyref { uintptr_t value; };

struct eqref { anyref p; };

struct i3iref { eqref p; };

struct arrayref { eqref p; };

struct structref { eqref p; };

struct externref { uintptr_t value; };
struct funcref { void =*value; uint32_t type; };
struct wasm_obj { uintptr_t tag word; };

struct wasm_array { struct wasm_obj p; uint32_t len; };
struct wasm_struct { struct wasm obj p; };

Base types

// Assume static inline
int is_null(anyref ref) { return ref.value =
int is_imm(anyref ref) { return (ref.value & 1

0; 1}
1) == 1; }

wasm_obj* any_obj(anyref ref) {
assert('is null(ref) && 'is imm(ref));
return (wasm_obj*) ref.value;

}

Let’s step through generated C

(type $type_0
(struct 132))

(rec

(type $type_1
(sub $type 0 (struct 132 (ref $typel)))))

Generated types; tags assigned via depth-first search

struct type Oref { structref p; };
struct type_1ref { type Oref p; };

struct type 0 { wasm_struct p; int32_t f0; };
struct type 1 { type 0 p; type_ 1ref f1; };

int 1s_type O(anyref ref) {
wasm_obj *obj = any_obj(ref);
uint32_t tag = ((uint32_t) obj->tag word) >> 1;
return 0 <= tag 6& tag < 2;

h

No handles; stack/registers conservatively traced, pinned

static type_1ref pack type 1(type_1 *obj) {
// Oh yeah baby

return (type_1ref){{{{{(uintptr_t)obj}}}}};
}

static type_1lref
make _type 1(struct gc_mutator =*mut, int32_t f0, type_ 1ref f1)
type_1 *ret =
gc_allocate(mut, sizeof(type 1), GC_ALLOCATION_TAGGED);
ret->p.p.p.tag word = 1 << 1;
ret->p.f0 = f0;
ret->f1 = f1;
return pack _type_1(ret);

Capabilities

Ad-hoc selection of stdlib imports (e.g.
(import "debug" "debug_str"));

Going to build out Hoot stdlib shortly:
bignums, etc

Wastrel can implement extensions, e.g.
stringref or stringref support

Can still access WASI capability, but
impedance mismatch with linear
memory

Status Demo-ware

codeberg.org/andywingo/wastrel/
1ssues/

What's next?

Happy to implement more stdlib for
OCaml, etc

Guile-to-native

Benchmarking: prove mostly-marking
collector performance against real
programs

Feature completeness (e.g. exceptions)
Fix to enable FS sandbox with GC

Implement new Wasm standards
(stack switching!!!)

Help evolve Wasm standards

Call to Writing a new language? Consider
action™ targetting WasmGC!

& wingolog.org/archives/2014/11/
27/scheme-workshop-2014/

Targetting WasmGC? Let’s make
native binaries together!

& codeberg.org/andywingo/
wastrel/

Need a GC? Let’s talk!
a github.com/wingo/whippet/

