
Celebrating
Guile 3
FOSDEM 2020, Brussels

Andy Wingo | wingo@igalia.com

wingolog.org | @andywingo

Lessons Learned
from Guile, the
Ancient & Spry
FOSDEM 2020, Brussels

Andy Wingo | wingo@igalia.com

wingolog.org | @andywingo

spry /sprī/

adjective: active; lively❧

mini-
benchmark:
eval

(primitive-eval
 '(let fib ((n 30))
 (if (< n 2)
 n
 (+ (fib (- n 1)) (fib (- n 2))))))

Guile 1.8: primitive-eval written in C

Guile 2.0+: primitive-eval in Scheme

macro-
benchmark:
guix

guix build libreoffice ghc-pandoc guix \
 --dry-run --derivation

7% faster
guix system build config.scm \
 --dry-run --derivation

10% faster

spry /sprī/

adjective: (especially of an old
person) active; lively

❧

guile
is
ancient

2010: Rust

2009: Go

2007: Clojure

1995: Ruby

1995: PHP

1995: JavaScript

1993: Guile (3³ years before 3.0!)

built
from
ancient
parts

1991: Python

1990: Haskell

1990: SCM

1989: Bash

1988: Tcl

1988: SIOD

written
in an
ancient
language

1987: Perl

1984: C++

1975: Scheme

1972: C

1958: Lisp

1958: Algol

1954: Fortran

1958: Lisp

1930s: λ-calculus (3^4 years ago!)

ancient &
spry

Men make their own history, but they
do not make it as they please; they do
not make it under self-selected
circumstances, but under
circumstances existing already, given
and transmitted from the past.

The tradition of all dead generations
weighs like a nightmare on the brains
of the living. [...]

Eighteenth Brumaire of Louis
Bonaparte, Marx, 1852

ancient &
spry

Languages evolve; how to remain
minimal?

Dialectic opposites

world and guile❧

stable and active❧

...❧

Lessons learned from inside Hegel’s
motor of history

hill-
climbing
is
insufficient

Ex: Guile 1.8; Extend vs Embed

users
stay
unless
pushed
away

Inertial factor: interface

Source (API)❧

Binary (ABI)❧

Embedding (API)❧

CLI❧

...❧

Ex: Python 3; local-eval; R6RS
syntax; set!, set-car!

you
can’t
keep
all
users

What users say: don’t change or
remove existing behavior

But: sometimes losing users is OK.
Hard to know when, though

No change at all == death

Natural result of hill-climbing❧

Ex: psyntax; BDW-GC mark & finalize;
compile-time; Unicode / locales

every
interface
is a
cost

Guile binary ABI: libguile.so; compiled
Scheme files

Make compatibility easier:minimize
interface

Ex: scm_sym_unquote, GOOPS, Go,
Guix

parallel
installs
for the
win

Highly effective pattern for change

libguile-2.0.so❧

libguile-3.0.so❧

https://ometer.com/parallel.html

Changed ABI is new ABI; it should
have a new name

Ex: make-struct/no-tail,
GUILE_PKG([2.2]), libtool

deprecation
facilitates
migration

__attribute__ ((__deprecated__))

(issue-deprecation-warning
 "(ice-9 mapping) is deprecated."
 " Use srfi-69 or rnrs hash tables instead.")

scm_c_issue_deprecation_warning
 ("Arbiters are deprecated. "
 "Use mutexes or atomic variables instead.");

begin-deprecated,
SCM_ENABLE_DEPRECATED

the
arch-
pattern

Replace, Deprecate, Remove

All change is possible; question is only
length of deprecation period

Applies to all interfaces

Guile deprecation period generally one
stable series

Ex: scm_t_uint8; make-struct;
Foreign objects; uniform vectors

change
produces
a new
stable
point

Stability within series: only additions

Corollary: dependencies must be at
least as stable as you!

for your definition of stable❧

social norms help (GNU, semver)❧

Ex: libtool; unistring; gnulib

who
can
crank
the
motor
of
history?

All libraries define languages

Allow user to evolve the language

User functionality: modules (Guix)❧

User syntax: macros (yay Scheme)❧

Guile 1.8 perf created tension

incorporate code into Guile❧

large C interface “for speed”❧

Compiler removed pressure on C ABI

Empowered users need less from you

contributions
and
risk

From maintenance point of view, all
interface is legacy

Guile: Sometimes OK to accept user
modules when they are more stable
than Guile

In-tree users keep you honest

Ex: SSAX, fibers, SRFI

sticky
bits

Memory management is an ongoing
thorn

Local maximum: Boehm-Demers-
Weiser conservative collector

How to get to precise, generational
GC?

Not just Guile; e.g. CPython __del__

future We are here: stability

And then?

Parallel-installability for source
languages: #lang

❧

Sediment idioms from Racket to
evolve Guile user base

❧

Remove myself from “holding the
crank”

dialectic,
boogie
woogie
woogie

https://gnu.org/s/guile

https://wingolog.org/

#guile on freenode

@andywingo

wingo@igalia.com

Happy hacking!

