IFFaster Programs
with Guile 3

FOSDEM 2019, Brussels
Andy Wingo | wingo@igalia.com

wingolog.org | @andywingo

thiS What?

talk 4 Your programs are faster with
Guile 3!

How?
2 The path to Guile 3

Where?
: The road onward

I'eSIﬂtS Guile 3 — it’s Guile, but faster!
Sum 10 million element f32vector
& 2.7x as fast
Expand (sxml ssax)
a4 1.5x as fast
Guix graft
a .. as fast

And it will only get faster!

back In 2006, I had Guile programs that ran

the ’;o(; ;lowlr};t)
1d eve ing
truck 2 C hot-paths
up 2 Extensive cacheing/memoizing

2 Built a profiler...

In the end, problem was: Guile ran
Scheme code too slowly.

Solution: make Guile faster.

Guile
n
2006

(fib 42)

¢ expand

#<call #<ref fib> #<const 42>>

interpret

aultr]-und

Guile
1n
2010

(fib 42)

* expand

#<call #<ref fib> #<const 42>>| |optimize

(’)lU.Z]—(’)Z.ldlU 09I

¢ codegen

ref fib; const 42; call 2

F X\

memory disk } interpret at run-time

I'unning At run-time: interpret instructions
by_t ecode from bytecode

Bytecode interpreter: vm. c

Like turing machine: bytecode is the
tape

Interpreter sometimes called “virtual”
machine

2 Defined on top of “native” machine
(e.g. x86, C, ...)

bllt A faster Guile means more kinds of
then programs can be written in Guile

Also, I got hooked — making compilers
1s fun

- This is my job now

Guile
n
2017

(fib 42)

* expand

#<call #<ref fib> #<const 42>> | |optimize| &
+ lower ;'?
~.

"CPS soup" optinuze c%

+ codegen

lower-level bytecode

¥\

memory disk) interpret at run-time

current Language needs to evolve
Guile a Approach Racket (frontend work)
needs Guile itself could be faster

2 Enlarge set of Guile-appropriate
problems

2 Speed inception: speed up Guile,
speed up compiler

- Maintain low-latency programming

- | am ajunkie

Guile
n
2019

(fib 42)

* expand

#<call #<ref fib> #<const 42>>| |optimize

¢ lower

JUll] —(’)I.Zdlll 09

"CPS soup" optimize

¢ virtual codegen

really low-level bytecode

X\

memory disk \ interpret at run-time while cold

x % native codegen when hot

machine code (e.g. x86-64)

Guile (This is the Guile 3 work)

1N Next step in incremental, compatible
501 improvement
9 2.9.1 released October 2018

“Done”’-1sh

Guile Generate good native code
3 g()al a Avoid code bloat

a Limit complexity of
implementation

2 Keep support for all platforms
Two steps:

2 Lower-level bytecode

xa (Fenerate native code

IOWGI'— Guile 2.2:

1 1 scheme@(guile-user)> ,x (lambda (x) (vector-ref x 0))
eVe 0 (assert-nargs-ee/locals 2 0)
(vector-ref/immediate 0 0 0Q)

1
by l eCOde 2 (handle-interrupts)
3

(return-values 2)

lower-
level

bytecode

Guile 3.0:

scheme@(guile-user)> ,x (lambda (x) (vector-ref x 0))

(Lnstrument-entry 229)

(assert-nargs-ee/locals 2 0) ;5 2 slots (1 ar
(Lmmediate-tag=? 0 7 0) ;5 heap-object?
(jne 15) s o> L2
(heap-tag=? 0 127 13) ;5 vector?

(jne 12) seoo> L2

(word-ref/i1mmediate 1 0 0)
(ursh/immediate 1 1 8)
(1mm-s64<? 1 0)

(jnl 5) O I |
(scm-ref/immediate 1 0 1)
(reset-frame 1) 1 slot

(handle-1interrupts)
(return-values)

(make-short-immediate 1 2) 7y 0
(throw/value+data 1 177) ;; #(out-of-range ...)

(throw/value+data 0 201) ;; #(wrong-type-arg ...

compared Instructions closer to machine code

to More 1nstructions

Guile More control tflow

5 o More optimization opportunities (e.g.
} elide type checks)

More work for optimizer

compared Compile time could be longer

to - More instructions means more
: work for compiler
Guile

Run time could be longer

2.2

xa More 1nstructions means more
work at run-time for instruction
dispatch

But...

code Interpreter:

/* make-short-immediate dst:8 low-bits:16

generation :

* Make an 1mmediate whose low bits are
* LOW-BITS, and whose top bits are 0.
*/
{

uint8 t dst;

scm t bits val;

UNPACK 8 16 (op, dst, val);
SP SET (dst, SCM PACK (val));
NEXT (1);

}

Compiler:

jit movi (TO, SCM_UNPACK (val));
jit stxi (8 * dst, SP, TO);

code
generation

GNU Lightning: implementations of
jit movi, etc for all common
architectures

Native code performs same operations
on Guile stack that VM interpreter
would

2 No register allocation yet

- Tier-up possible anywhere

a Tier-down anywhere to debug
Complete JIT support in 5 KLOC
Only 1 reserved reg (current thread)

when: Ahead-of-time (AOT) code generation
AOT? perfectly possible

Native code currently a pure function
of bytecode, not specialized on run-
time values

Store result in ELF
Not yet implemented

when: Just-in-time (JIT): generate native
JIT? code at run-time

But when, specifically?

2 Need to avoild codegen for bytecode
that doesn’t matter

Guile: per-function counter
incremented at call and loop iteration

Configurable tier-up threshold

Status GNU Lightning impedance probs :(

Lightning 1: Close! But limited
platforms

Lightning 2: API good, but...

2 (Crashes in optimizer sometimes :(
Do not want optimizer

- Regalloc useless for Guile

- (Custom calling conventions hard
Need solution before 3.0

next? Register allocation

Consistently comparable perf to Chez

WASM backend! (Depends on "GC"
proposal)

Racketification

(Figure out how I can play well with
others!)

queStiOnS? https://gnu.org/s/qguile
https://wingolog.org/
#guile on freenode
@andywingo

Happy hacking!

oh no
it’s the
bonus
slides

JIT GUILE JIT THRESHOLD=50000: When
) IT; -1 1 for al
environment © 711 -1 for never, o for always

: a (Call increments by 2, loop by 30
variables e

a High default == JIT slow currently
GUILE JIT LOG=o0: Log level; up to 4.

GUILE JIT STOP AFTER=0: Stop JIT
compilation after this many functions.
Usetul for debug.

GUILE JIT PAUSE WHEN STOPPING=O:
Pause for GDB to attach after stopping
JIT.

