
Faster Programs
with Guile 3
FOSDEM 2019, Brussels

Andy Wingo | wingo@igalia.com

wingolog.org | @andywingo

this
talk

What?

Your programs are faster with
Guile 3!

❧

How?

The path to Guile 3❧

Where?

The road onward❧

results Guile 3 – it’s Guile, but faster!

Sum 10 million element f32vector

2.7x as fast❧

Expand (sxml ssax)

1.5x as fast❧

Guix graft

... as fast❧

And it will only get faster!

back
the
truck
up

In 2006, I had Guile programs that ran
too slowly.

I did everything

C hot-paths❧

Extensive cacheing/memoizing❧

Built a profiler...❧

In the end, problem was: Guile ran
Scheme code too slowly.

Solution: make Guile faster.

Guile
in
2006

Guile
in
2010

running
bytecode

At run-time: interpret instructions
from bytecode

Bytecode interpreter: vm.c

Like turing machine: bytecode is the
tape

Interpreter sometimes called “virtual”
machine

Defined on top of “native” machine
(e.g. x86, C, ...)

❧

but
then

A faster Guile means more kinds of
programs can be written in Guile

Also, I got hooked – making compilers
is fun

This is my job now❧

Guile
in
2017

current
Guile
needs

Language needs to evolve

Approach Racket (frontend work)❧

Guile itself could be faster

Enlarge set of Guile-appropriate
problems

❧

Speed inception: speed up Guile,
speed up compiler

❧

Maintain low-latency programming❧

I am a junkie❧

Guile
in
2019

Guile
in
2019

(This is the Guile 3 work)

Next step in incremental, compatible
improvement

2.9.1 released October 2018

“Done”-ish

Guile
3 goal

Generate good native code

Avoid code bloat❧

Limit complexity of
implementation

❧

Keep support for all platforms❧

Two steps:

Lower-level bytecode❧

Generate native code❧

lower-
level
bytecode

Guile 2.2:
scheme@(guile-user)> ,x (lambda (x) (vector-ref x 0))
 0 (assert-nargs-ee/locals 2 0)
 1 (vector-ref/immediate 0 0 0)
 2 (handle-interrupts)
 3 (return-values 2)

lower-
level
bytecode

Guile 3.0:
scheme@(guile-user)> ,x (lambda (x) (vector-ref x 0))
 0 (instrument-entry 229)
 2 (assert-nargs-ee/locals 2 0) ;; 2 slots (1 arg)
 3 (immediate-tag=? 0 7 0) ;; heap-object?
 5 (jne 15) ;; -> L2
 6 (heap-tag=? 0 127 13) ;; vector?
 8 (jne 12) ;; -> L2
 9 (word-ref/immediate 1 0 0)
 10 (ursh/immediate 1 1 8)
 11 (imm-s64<? 1 0)
 12 (jnl 5) ;; -> L1
 13 (scm-ref/immediate 1 0 1)
 14 (reset-frame 1) ;; 1 slot
 15 (handle-interrupts)
 16 (return-values)
L1:
 17 (make-short-immediate 1 2) ;; 0
 18 (throw/value+data 1 177) ;; #(out-of-range ...)
L2:
 20 (throw/value+data 0 201) ;; #(wrong-type-arg ...)

compared
to
Guile
2.2

Instructions closer to machine code

More instructions

More control flow

More optimization opportunities (e.g.
elide type checks)

More work for optimizer

compared
to
Guile
2.2

Compile time could be longer

More instructions means more
work for compiler

❧

Run time could be longer

More instructions means more
work at run-time for instruction
dispatch

❧

But...

code
generation

Interpreter:
 /* make-short-immediate dst:8 low-bits:16
 *
 * Make an immediate whose low bits are
 * LOW-BITS, and whose top bits are 0.
 */
 {
 uint8_t dst;
 scm_t_bits val;

 UNPACK_8_16 (op, dst, val);
 SP_SET (dst, SCM_PACK (val));
 NEXT (1);
 }

Compiler:
jit_movi (T0, SCM_UNPACK (val));
jit_stxi (8 * dst, SP, T0);

code
generation

GNU Lightning: implementations of
jit_movi, etc for all common
architectures

Native code performs same operations
on Guile stack that VM interpreter
would

No register allocation yet❧

Tier-up possible anywhere❧

Tier-down anywhere to debug❧

Complete JIT support in 5 kLOC

Only 1 reserved reg (current thread)

when:
AOT?

Ahead-of-time (AOT) code generation
perfectly possible

Native code currently a pure function
of bytecode, not specialized on run-
time values

Store result in ELF

Not yet implemented

when:
JIT?

Just-in-time (JIT): generate native
code at run-time

But when, specifically?

Need to avoid codegen for bytecode
that doesn’t matter

❧

Guile: per-function counter
incremented at call and loop iteration

Configurable tier-up threshold

status GNU Lightning impedance probs :(

Lightning 1: Close! But limited
platforms

Lightning 2: API good, but...

Crashes in optimizer sometimes :(❧

Do not want optimizer❧

Regalloc useless for Guile❧

Custom calling conventions hard❧

Need solution before 3.0

next? Register allocation

Consistently comparable perf to Chez

WASM backend! (Depends on "GC"
proposal)

Racketification

(Figure out how I can play well with
others!)

questions? https://gnu.org/s/guile

https://wingolog.org/

#guile on freenode

@andywingo

Happy hacking!

oh no
it’s the
bonus
slides

JIT
environment
variables

GUILE_JIT_THRESHOLD=50000: When
to JIT; -1 for never, 0 for always

Call increments by 2, loop by 30❧

High default == JIT slow currently❧

GUILE_JIT_LOG=0: Log level; up to 4.

GUILE_JIT_STOP_AFTER=0: Stop JIT
compilation after this many functions.
Useful for debug.

GUILE_JIT_PAUSE_WHEN_STOPPING=0:
Pause for GDB to attach after stopping
JIT.

