
Good news,
everybody!
Understanding Guile 2.2 Performance

FOSDEM 2016

Andy Wingo

wingo@{igalia,pobox}.com

https://wingolog.org

Good news, everybody!
Guile is faster! Woo hoo!

Bad news, everybody!
“The expert Lisp programmer eventually
develops a good ’efficiency
model’.”—Peter Norvig, PAIP

Your efficiency model is out of date

Recap: 1.8
Simple

Approximate efficiency model:

Cost O(n) in number of reductions❧

Example:

Which is slower, (+ 1 (+ 2 3)) (+ 1 5) ?❧

No compilation, so macros cost at run-
time

Recap: 2.0
Compilation: macro use has no run-time
cost

Partial evaluation (peval)

Cost of (+ 1 (+ 2 3)) and 6 are same❧

Some contification

More on this later❧

No allocation when building
environments

Recap: 2.0
Cost O(n) in number of instructions

But instructions do not map nicely to
Scheme

❧

Inspect the n in O(n):

,optimize (effect of peval)❧

,disassemble (instructions, effect of
contification)

❧

A note on peval

> ,optimize (let lp ((n 5))
 (if (zero? n)
 n
 (+ n (lp (1- n)))))
$6 = 15

Function inlining, loop unrolling
(recursive or iterative), constant folding,
constant propagation, beta reduction,
strength reduction

Essentially lexical in nature

Understanding peval is another talk

Guile 2.2
Many improvements of degree

Some improvements of kind

Understanding needed to re-develop
efficiency model

Improvements of kind
A lambda is not always a closure

Names don’t keep data alive

Unlimited recursion

Dramatically better loops

Lower footprint

Unboxed arithmetic

A lambda is not always a
closure
A lambda expression defines a function

That function may or may not exist at
run-time

A lambda is not always a
closure
Gone

Inlined

Contified

Code pointer

Closure

Lambda: Gone
peval can kill unreachable lambdas
> ,opt (let ((f (lambda ()
 (launch-the-missiles!))))
 42)
42

> ,opt (let ((launch? #f)
 (f (lambda ()
 (launch-the-missiles!))))
 (if launch? (f) 'just-kidding))
just-kidding

Lambda: Inlined
peval can inline small or called-once
lambdas
> ,opt (let ((launch? #t)
 (f (lambda ()
 (launch-the-missiles!))))
 (if launch? (f) 'just-kidding))
(launch-the-missiles!)

Lambda: Contified
Many of Guile 2.2’s optimizations can’t
be represented in Scheme
> (define (count-down n)
 (define loop
 (lambda (n out)
 (let ((out (cons n out)))
 (if (zero? n)
 out
 (loop (1- n) out)))))
 (loop n '()))

> ,x count-down
Disassembly of #<procedure count-down (n)> at #x9775a8:

[...]
L1:
 10 (cons 2 1 2)
 11 (br-if-u64-=-scm 0 1 #f 5) ;; -> L2
 14 (sub/immediate 1 1 1)
 15 (br -5) ;; -> L1
L2:
[...]

loop function was contified: incorporated
into body of count-down

Lambda: Contified
Inline : Copy :: Contify : Rewire

Contification always an optimization

Never causes code growth❧

Enables other optimizations❧

Can contify a set of functions if

All callers visible to compiler❧

Always called with same continuation❧

Reliable: Expect this optimization

Lambda: Code pointer
(define (thing)
 (define (log what)
 (format #t "Very important log message: ~a\n" what)
 ;; If `log' is too short, it will be inlined. Make it bigger.
 (format #t "Did I ever tell you about my chickens\n")
 (format #t "I was going to name one Donkey\n")
 (format #t "I always wanted a donkey\n")
 (format #t "In the end we called her Raveonette\n")
 (format #t "Donkey is not a great name for a chicken\n")
 (newline) (newline) (newline) (newline) (newline))
 (log "ohai")
 (log "kittens")
 (log "donkeys"))

Lambda: Code pointer
,x thing
Disassembly of #<procedure thing ()> at #x97d704:

[...]

Disassembly of log at #x97d754:

[...]

Two functions, we prevented inlining,
whew

Lambda: Code pointer
,x thing
Disassembly of #<procedure thing ()> at #x97d704:
[...]
 12 (call-label 3 2 8) ;; log at #x97d754

Call procedure at known offset (+8 in
this case)

Cheaper call

Precondition: All callers known

Lambda: Code pointer
,x thing
Disassembly of #<procedure thing ()> at #x97d704:
[...]
 12 (call-label 3 2 8) ;; log at #x97d754

No need for procedure-as-value

Guile currently has a uniform calling
convention

Callee-as-a-value passed as arg 0❧

Arg 0 provides access to free vars, if
any

❧

Lambda: Code pointer
If you don’t need the code pointer...

No free vars? Pass any value as arg 0

1 free var? Pass free variable as arg 0

2 free vars? Free vars in pair, pass that
pair as arg 0

3 or more? Free vars in vector

Mutually recursive set of procedures?
One free var representation for union of
free variables of all functions

Lambda: Closure
Not all callees known? Closure

Closure: an object containing a code
pointer and free vars

Though...

0 free variables? Use statically allocated
closure

Entry point of mutually recursive set of
functions, and all other functions are
well-known? Share closure

Lambda: It’s complicated

Names don’t keep data
alive
2.0: Named variables kept alive

In particular, procedure arguments and
the closure
(define (foo x)
 ;; Should I try to "free" x here?
 ;; (set! x #f)
 (deep-recursive-call)
 #f)

(foo (compute-big-vector))

Names don’t keep data
alive
2.2: Only live data is live

User-visible change: less retention...

...though, backtraces sometimes missing
arguments

Be (space-)safe out there

Unlimited recursion
Guile 2.0: Default stack size 64K values

Could raise or lower with
GUILE_STACK_SIZE

Little buffer at end for handling errors,
but quite flaky

Unlimited recursion
Guile 2.2: Stack starts at one page

Stack grows as needed

When stack shrinks, excess pages
returned to OS, at GC

See manual

Recurse away :)

Dramatically better loops
Compiler in Guile 2.2 can reason about
loops

Contification produces loops

Improvements of degree: CSE, DCE, etc
over loops

Improvements of kind: hoisting

Dramatically better loops
One entry? Hoist effect-free or always-
reachable expressions (LICM)

One entry and one exit? Hoisting of all
idempotent expressions (peeling)
(define (vector-fill! v x)
 (let lp ((n 0))
 (when (< n (vector-length v))
 (vector-set! v n x)
 (lp (1+ n)))))

Disassembly needed to see.

Footprint
Guile 2.0

3.38 MiB overhead per process❧

13.5 ms startup time❧

(Overhead: Dirty memory, 64 bit)

Guile 2.2

2.04 MiB overhead per process❧

7.5 ms startup time❧

ELF shareable static data allocation

Lazy stack growth (per-thread win too!)

Unboxed arithmetic
Guile 2.0

All floating-point numbers are heap-
allocated

❧

Guile 2.2

Sometimes we can use raw floating-
point arithmetic

❧

Sometimes 64-bit integers are
unboxed too

❧

Unboxed arithmetic
> (define (f32vector-double! v)
 (let lp ((i 0))
 (when (< i (bytevector-length v))
 (let ((f32 (bytevector-ieee-single-native-ref v i)))
 (bytevector-ieee-single-native-set! v i (* f32 2))
 (lp (+ i 4))))))

Unboxed arithmetic
> (define v (make-f32vector #e1e6 1.0))
> ,time (f32vector-double! v)

Guile 2.0: 152ms, 71ms in GC

Guile 2.2: 15.2ms, 0ms in GC

10X improvement!

> ,x f32vector-double!
...
L1:
 18 (bv-f32-ref 0 3 1)
 19 (fadd 0 0 0)
 20 (bv-f32-set! 3 1 0)
 21 (uadd/immediate 1 1 4)
 22 (br-if-u64-< 1 4 #f -4) ;; -> L1

Index and f32 values unboxed

Length computation hoisted

Strength reduction on the double

Loop inverted

Unboxed arithmetic
Details gnarly.

Why not:
> (define (f32vector-map! v f)
 (let lp ((i 0))
 (when (< i (f32vector-length v))
 (let ((f32 (f32vector-ref v i)))
 (f32vector-set! v i (f f32))
 (lp (+ i 1))))))

Unboxed arithmetic
 (when (< i (f32vector-length v))
 (let ((f32 (f32vector-ref v i)))
 (f32vector-set! v i (f f32))
 (lp (+ i 1))))

Current compiler limitation: doesn’t
undersand f32vector-length, which
asserts bytevector length divisible by 4

Compiler can’t see through (f f32): has
to box f32

... unless f is inlined

Unboxed arithmetic
In practice: 10X speedups, if your
efficiency model is accurate

Odd consequence: type checks are back
(unless (= x (logand x #xffffffff))
 (error "not a uint32"))

Allows Guile to unbox x as integer

Useful on function arguments

Unboxed arithmetic
-- LuaJIT
local uint32 = ffi.new('uint32[1]')
local function to_uint32(x)
 uint32[0] = x
 return uint32[0]
end

For floats, use f64vectors :)

Summary
Guile 2.0: Cost is O(n) in number of
instructions

Guile 2.2: Same, but to understand
performance

Mapping from Scheme to instructions
more complex

❧

,disassemble necessary to verify❧

Pay more attention to allocation❧

Or just come along for the ride and enjoy
the speedups :)

