
From Stack to Heap
and Back
Contemporary Currents in Garbage
Collection

6 June 2024—Compilers Team Internal
Presentation

AndyWingo



Agenda Garbage collection in JS
implementations over time

The unstable equilibrium of the now

Discussion



But first, a
quiz



Allocation
algorithms



Collection
algorithms



Ways in
which
different
objects are
managed
differently



Ways to
minimize
pause times



Difference
between
concurrent
and parallel



Difference
between
concurrent
and
incremental



What’s a
write barrier
for



What’s a read
barrier for



Good
afternoon



The distant
past

The field 20 years ago: IE, Firefox
(2004), KHTML

SpiderMonkey: Pile of hoary C++

JS: Gmail (2004), Google Maps (2005)

Low expectations

GC expertise: Java, Lisp, ML



GC on the
cheap

SpiderMonkey: Stop-the-world mark-
sweep with conservative stack
scanning



V8: 2008 Strongtalk / JVM heritage

Baseline compiler with inline caches,
hidden classes

GC becomes bottleneck

Generational stop-the-world

Nursery: Evacuating scavenger❧

Old generation: Mark-compact (I
think...)

❧

Precise rooting via Handle<>



The JS arms
race

JSC, SM, V8 engage in race for speed

Compiler work pinches GC

SM: Adopt V8 design; 5-year project to
switch to precise roots https://
blog.mozilla.org/javascript/2013/
07/18/clawing-our-way-back-to-
precision/

Also, write barrier to tabulate old-to-
new edges



2013-2022 Benchmarks measure latency

Push to reduce pause time

Multiplication of cores, rise of mobile:
parallelize all the phases, concurrent/
incremental trace



Convergence? Three-tier runtime (interpreter,
baseline, optimizing)

Two-generation GC (scavenger +
mark-compact)

Concurrent major trace, lazy/
concurrent sweep, parallel workers

End of history?



Antithesis JSC uses older GC design: Bartlett
Mostly-Copying Collector

Only some nodes can be target of
edges from stack

❧

The rest can move❧

Generational via sticky mark bit
https://wingolog.org/archives/
2022/10/22/the-sticky-mark-
bit-algorithm

❧

Why does JSC keep scanning stack
conservatively?



CSS: Suxxx? Cheap to implement

Let the optimizing compiler optimize

GCC/LLVM can register-allocate
temporaries, use internal pointers

❧

Same for JS optimizing JIT❧

Still have to pay write barrier cost for
on-heap mutations

No overhead for handle management

Risks low: stack often empty, 64-bit
address space



Meanwhile,
DOM

JS embedded in web browsers

DOM has thousands of object kinds

DOM objects can reference JS

DOMmaintained by separate team

SpiderMonkey: Cycle collector

V8: Weak refs from DOM to JS

Bugs happen, they are exploitable



V8: Oilpan GC provides comprehensive memory
safety

Make GC trace C++ object graph

A second GC!

Now in V8: cppgc

V8 GC team starts to own cppgc
allocations

Opportunity: Bump-pointer nursery?



Spanner in
the works

Many DOM users don’t expect
evacuation, e.g. assume that this does
not change within a method

V8’s scavenger requires users to allow
evacuation

Would be nice: fast bump-pointer
allocation, but non-moving GC



Synthesis V8: *Minor mark-sweep nursery*

Instead of evacuating, mark survivors

Block-structured heap, spatially
partitioned generations

Promote whole pages instead of
individual objects



MinorMS
challenges

Hard to beat evacuation / semispace
for low survival rates, and survival
rates are usually low

Evacuation work proportional to
live size, sweep work proportional
to heap size

❧

Marking needs worklist,
evacuation uses simple cheney
algorithm

❧

Compacting has cache benefits❧

Evacuation produces lovely bump-
pointer arenas

❧



MinorMS
opportunities

No need for 2x space

Direct handles instead of indirect

Bump-pointer allocation into regions
for cppgc



MinorMS
status

On for a % of Chrome users, but not
stable

Sticky mark bit experiments: promote
by leaving mark bit instead of
promoting whole page

Synthesis?



Alice’s
Restaurant

Remember Alice? This is a song about
Alice



Guile Boehm-Demers-Weiser single-
generation parallel stop-the-world
mark-sweep GC with conservative
root-finding

Pretty good, actually!

Could be better



Whippet New GC for Guile. Embed-only libary.

No-overhead abstract API❧

Set of implementations❧

A specific Immix-based impl❧

Whippet impl: Immix-based mark-
region collector with compaction via
optimistic (fallible) evacuation.

Possibly parallel, generational,
conservative stack scanning,
conservative heap scanning

https://github.com/wingo/whippet



Whippet
challenges
are like
MinorMS
challenges

Pinning of stack-referenced objects

Synthesis with object-pinning

Fast allocation

Generation sizing

Sticky mark bit vs block promotion

Work for next 3-4 months or so



Testing
Whippet

Whiffle https://github.com/wingo/
whiffle

AOT baseline compiler for Scheme
subset

10 basic microbenchmarks, can run
Whippet in all configurations

Whole lot of basic science needed



Up next for
Whippet

Heap growth / shrinking

Perfetto / etc

Finalizers

Tuning

Guile integration

Parallel semi-space...

Concurrent marking?



Discussion
points

Is V8 making a mistake? SM? JSC?

What are the potential impacts on
Node?

What about the sandbox?

What’s next for the dialectic?

What are the impacts of MinorMS on
Igalia? Of Whippet?

Commercial ideas


