
CPS Soup
A functional intermediate language

10 May 2023 – Spritely

Andy Wingo

Igalia, S.L.

CPS Soup Compiler: Front-end to Middle-end to
Back-end

Middle-end spans gap between high-
level source code (AST) and low-level
machine code

Programs in middle-end expressed in
intermediate language

CPS Soup is the language of Guile’s
middle-end

How to
lower?

High-level:
(+ 1 (if x 42 69))

Low-level:
 cmp $x, #f
 je L1
 mov $t, 42
 j L2
L1:
 mov $t, 69
L2:
 addi $t, 1

How to get from here to there?

1970s Control-flow graph (CFG)
graph := array<block>
block := tuple<preds, succs, insts>
inst := const C
 | z = add x, y
 ...

Assignment, not definition

1980s Static single assignment (SSA) CFG
graph := array<block>
block := tuple<preds, succs, phis, insts>
phi := z := φ(x, y, ...)
inst := const C
 | z := add x, y
 ...

In v2:=φ(v0,v1), v2 is

v0 if coming from first predecessor❧

v1 from second predecessor❧

Phony function

2003:
MLton

Refinement: phi variables are basic
block args
graph := array<block>
block := tuple<preds, succs, args, insts>

Inputs of phis implicitly computed
from preds
BB0(a0): if a0 then BB1() else BB2()
BB1(): v0 := const 42; BB3(v0)
BB2(): v1 := const 69; BB3(v1)
BB3(v2): v3 := addi v2, 1; return v3

Scope and
dominators

BB0(a0): if a0 then BB1() else BB2()
BB1(): v0 := const 42; BB3(v0)
BB2(): v1 := const 69; BB3(v1)
BB3(v2): v3 := addi v2, 1; return v3

What vars are “in scope” at BB3? a0
and v2.

Not v1 or v2; not all paths from BB0 to
BB3 define v1.

a0 always defined: its definition
dominates all uses.

BB0 dominates BB3: All paths to BB3
go through BB0.

Refinement:
Control tail

Often nice to know how a block ends
(e.g. to compute phi input vars)
graph := array<block>
block := tuple<preds, succs, args, insts,
 control>
control := if v then L1 else L2
 | L(v, ...)
 | switch(v, L1, L2, ...)
 | return v

Refinement:
DRY

Block successors directly computable
from control

Predecessors graph is inverse of
successors graph
graph := array<block>
block := tuple<args, insts, control>

Can we simplify further?

Basic blocks
are
annoying

Ceremony about managing insts; array
or doubly-linked list?

Nonuniformity: “local” vs “global”
transformations

Optimizations transform graph A to
graph B; mutability complicates this
task

Desire to keep A in mind while
making B

❧

Bugs because of spooky action at a
distance

❧

Basic
blocks, phi
vars
redundant

Blocks: label with args sufficient;
“containing” multiple instructions is
superfluous

Unify the two ways of naming values:
every var is a phi
graph := array<block>
block := tuple<args, inst>
inst := L(expr)
 | if v then L1() else L2()
 ...
expr := const C
 | add x, y
 ...

Arrays
annoying

Array of blocks implicitly associates a
label with each block

Optimizations add and remove blocks;
annoying to have dead array entries

Keep labels as small integers, but use a
map instead of an array
graph := map<label, block>

This is CPS
soup

graph := map<label, cont>
cont := tuple<args, term>
term := continue to L
 with values from expr
 | if v then L1() else L2()
 ...
expr := const C
 | add x, y
 ...

SSA is CPS

No explicit scope tree: implicit
property of control flow

CPS soup in
Guile

Compilation unit is intmap of label to
cont
cont := $kargs names vars term
 | ...
term := $continue k src expr
 | ...
expr := $const C
 | $primcall 'add #f (a b)
 | ...

Conventionally, entry point is lowest-
numbered label

CPS soup term := $continue k src expr
 | $branch kf kt src op param args
 | $switch kf kt* src arg
 | $prompt k kh src escape? tag
 | $throw src op param args

Expressions can have effects, produce
values
expr := $const val
 | $primcall name param args
 | $values args
 | $call proc args
 | ...

Kinds of
continuations

Guile functions untyped, can multiple
return values

Error if too few values, possibly
truncate too many values, possibly
cons as rest arg...

Calling convention: contract between
val producer & consumer

both on call and return side❧

Continuation of $call unlike that of
$const

The conts cont := $kfun src meta self ktail kentry
 | $kclause arity kbody kalternate
 | $kargs names syms term
 | $kreceive arity kbody
 | $ktail

$kclause, $kreceive very similar

Continue to $ktail: return

$call and return (and $throw,
$prompt) exit first-order flow graph

High and
low

CPS bridges AST (Tree-IL) and target
code

High-level: vars in outer functions in
scope

Closure conversion between high and
low

Low-level: Explicit closure
representations; access free vars
through closure

Optimizations
at all levels

Optimizations before and after
lowering

Some exprs only present in one level

Some high-level optimizations can
merge functions (higher-order to first-
order)

Practicalities Intmap, intset: Clojure-style persistent
functional data structures

Program: intmap<label,cont>

Optimization: program→program

Identify functions:
(program,label)→intset<label>

Edges: intmap<label,intset<label>>

Compute succs:
(program,label)→edges

Compute preds: edges→edges

Flow
analysis

A[k] = meet(A[p] for p in preds[k])
 - kill[k] + gen[k]

Compute available values at labels:

A: intmap<label,intset<val>>❧

meet: intmap-intersect<intset-
intersect>

❧

-, +: intset-subtract, intset-
union

❧

kill[k]: values invalidated by cont
because of side effects

❧

gen[k]: values defined at k❧

Persistent
data
structures
FTW

meet: intmap-intersect<intset-
intersect>

❧

-, +: intset-subtract, intset-
union

❧

Naïve: O(nconts * nvals)

Structure-sharing: O(nconts *
log(nvals))

CPS soup:
strengths

Relatively uniform, orthogonal

Facilitates functional transformations
and analyses, lowering mental load: “I
just have to write a function from foo
to bar; I can do that”

Encourages global optimizations

Some kinds of bugs prevented by
construction (unintended shared
mutable state)

We get the SSA optimization literature

CPS soup:
weaknesses

Pointer-chasing, indirection through
intmaps

Heavier than basic blocks: more
control-flow edges

Names bound at continuation only; phi
predecessors share a name

Over-linearizes control, relative to sea-
of-nodes

Overhead of re-computation of
analyses

Recap CPS soup is SSA, distilled

Labels and vars are small integers

Programs map labels to conts

Conts are the smallest labellable unit
of code

Conts can have terms that continue to
other conts

Compilation simplifies and lowers
programs

Wasm vs VM backend: a question for
another day :)

