Cross-Plattorm
Mobile Ul

“Compilers, Compilers Everywhere”

27 June 2023 — EOSS Prague
Andy Wingo
Igalia, S.L.

Apps apps This 1s a talk about apps; good apps
dPPS And compilers; weird compilers

And open source, cross-platform app
frameworks

And the unexpected end of the end of
history

Google apps 5 Q O

All Videos Images News Shopping : More Tools [l Saved SafeSearch

) Sensor Tower *3 Spiceworks $ Sensor Tower
Top Apps Worldwide for Q3 2019 by Downlo... What is an App? Meaning, Types, and ... Top Apps Worldwide for Q2 2019 by Downlo...
O talseRorDfi@-0 d~
Do &ZBeonmroDeouine k8
& B0 pro0relD
B80Cc00reDe-80
e . 'BEBR-B=ecrR00000¢
B+ @am»200@8-00
. R

¢ Apple Q MacStories O Net Solutions
Ann <tore - Anpble (ER) Ceaellina Anpne on the Ann SRtore Paontilar Anne to Download in 20723

< C 8 https://signal.org ¢ | Q Search

///—\\\ 4
& Signal
L--_//

Speak
Freely

Say "hello" to a different
messaging experience. An
unexpected focus on privacy,
combined with all of the features
you expect.

Get Signal

| ¥ Signal- Signal- Signal-

Swift Ul Java / Kotlin TypeScript /
JavaScript

450 350 250
KSLOC KSLOC KSLOC

LibSignhal (Rust)

With thanks to Yong He from Futurewei

Do we know
how to
make apps?

SwiftUI

React Native

Java and Android views
Jetpack Compose
OpenGL / Vulkan
AppKit

Capacitor

NativeScript

Flutter

UIKit

€ & ¢ €& ¢ ¢ ¢ ¢ ¢ ¢

Step back [.M.H.O.—H before the O

Observe and learn: look for meaning
and motivation

Come back with lessons, then apply
them to now

[.essons

S N

LLesson 1 The old thing: stateful widget trees

var count 0
let stack new VStack
let text = new Text("Count: \(count)")
stack.add child(text)
let button = new Button("Increment")
button.set onclick(]]

count += 1

text.set text("Count: \(count)")

)
stack.add child(button)

https://raphlinus.github.10/u1/
druid/2019/11/22/reactive-ul.html

LLesson 1: The newer thing: Declarative Ul

Declarative 2013: React
Ul won on function Hello({ name }) {
the web return |

<p>Hello from React, {name}!</p>
) ;
}
Ul 1s a function: translate state to

immutable tree of elements

Nowadays many derivatives of this
paradigm

LLesson 1: 2019: Jetpack Compose

Declarative @Composable
fun MessageCard(name: String) {
Ul WOI.I OI1 Text(text = "Hello from " +
Andr()ld "Jetpack Compose, $name!");
}

Sometimes Ul tree implicitly collected
instead of returned

LLesson 1: 2019: SwiftUI
Declarative struct ContentView: view {

var name: String
UI woI 01l var body: some View {
10S Text ("Hello from SwiftUI, \(name)!")
.padding()
}
}

Particularly lovely ergonomics

LLesson 1: 2017: Flutter
Declarative class Hello extends StatelessWidget {

const Hello({required this.name,
Ul wol, super.key});
CIrOSS- final String name;
platform @override

Widget build(BuildContext context) {
return Text('Hello from Flutter,"
+ '$name! ') ;
}
}

Even when people abstract away from
platform, they go declarative

Lesson 1: But why? 3 reasons

Declarative = Managers like it: Decompose Ul
Ul won into org chart (Conway’s law)

a Comprehensively avoid view/model
state mismatch

a Developers seem to like i1t too

[.essons Declarative UI won

1.
2,
3.
4.
5.

l.esson 2 The rise of the framework

2 Developer declares Ul

2 Framework translates to imperative
operations on e.g. GPU

2 Framework determines when Ul
needs recomputation

Observation: Ul tree computation O(n)
in Ul size

How to avoid performance disaster?

Lesson 2: Division of labor: app developers say
Frameworks what, framework developers say how

limit Risky bargain
performance 4 main techniques

- Managed state
Incremental render

Concurrent render

¢ ¢ ¢

Concurrent GC

LLesson 2: Technique 1: Managed state

ErameWOYkS Framework re-renders only when
limat needed

perf()rmance function Hello({ name }) {
const [count, setCount] = useState(0);

function 1inc() {
setCount(x => x+1);

}
return (
<div>
<p>Count: {count}</p>
<button onclick={inc}>+1</button>
</div>

) ;
}

LLesson 2: Technique 2: Incremental render

ErameWOrkS Functional on top, but always
limit imperative underneath

performance = Web: DOM

4 React Native: UIKit / Android view
tree

- Flutter: GPU pipeline objects

Don’t recreate whole DOM on each
frame: just apply changes

Pixels[N+1l] := Pixels[N] +
Diff(UI[N+1], UI[N])

LLesson 2: Technique 3: Concurrent render

FrameWOrkS Basic: Build UI on one thread, render
limit to GPU/DOM on another

performance Hard on the web, easier on mobile

Limited gains for per-frame
concurrency

% Flutter YOHO

Build and display frames in 16ms

Since there are two separate threads for building and rendering, you have 16ms for building,
and 16ms for rendering on a 60Hz display. If latency is a concern, build and display a frame

in 16ms or less. Note that means built in 8ms or less, and rendered in 8ms or less, for a total
of 1éms or less.

If your frames are rendering in well under 16ms total in profile mode, you likely don't have to

worry about performance even if some performance pitfalls apply, but you should still aim to
build and render a frame as fast as possible. Why?

e Lowering the frame render time below 16ms might not make a visual difference, but it
improves battery life and thermal issues.

e |t might run fine on your device, but consider performance for the lowest device you are
targeting.

e As 120fps devices become more widely available, you'll want to render frames in under
8ms (total) in order to provide the smoothest experience.

LLesson 2: Technique 4: Concurrent GC

ErameWOrkS Concurrent: Runs while program runs.
limit Move O(n) trace off main thread

perf()rmance Without concurrent GC:

// UI thread
frame . frame . frame . pause: trace+finish . frame

With concurrent GC:

// UI thread

frame . frame . frame . pause: finish . frame
// GC thread

Reduce long-pole GC pause

Lesson 2: Providing good performance is a
Frameworks framework concern

limat Frameworks nudge app developers
performance into good performance patterns

Frameworks limit performance too

Lessons 1. Declarative UI won
2. Frameworks limit performance

3.
4.
5.

LLesson 3

ANY PROBLEM
WHATSOEVER

5 ISTHISARR®
‘comrums PROBLEN

)’

Lesson 3: Example 1: Front-end

Compilers @Composable
fun MessageCard(name: String) {
are back Text(text = "Hello from " +

"Jetpack Compose, $name!");

}
@Composable decorator: make it look

like you declare a tree, but compile to
Imperative operations

Lesson 3: Not just Jetpack Compose

Compilers 2 SwiftUI ResultBuilder

are back 2 HarmonyOS ArkUI with “eTS”
a React JSX
Compilers are a core part of the
modern Ul story

To work 1n this space: control the
means of production

LLesson 13:
Compilers
are back

Example 2: Deployment

Problem: Minimize startup latency,
maximize runtime predictability

Trend: Move to ahead-of-time
compilation

& React Native Hermes
o Panda ArkTS (without eval!)
@ Dart AOT

Predictability over performance

Lesson 3: Example 3: Graphics
Compilers
are back

- C A https://docs.flutter.dev/perf/shader B w9 Q Search 8 =

% Flutter YOIO

B &

Shader compilation jank

Performance > Shader jank

Contents

What is shader compilation jank?
What do we mean by “first run”?
How to use SkSL warmup

© Note: To learn how to use the Performance View (part of Flutter DevTools) for
debugging performance issues, see Using the Performance view.

1€ +la A Armirvn st i Amarme s v7mtir v mnilAa A Ao+ A tAambliaagey iy Armbvr A Fla A et vrirm +Fhhia 1a il ALy

LLesson 13:
Compilers
are back

Flutter Impeller: Compile shaders
ahead-of-time, not at run-time

Requires different rendering backend:
tesselate into many primitive triangles
instead of generating specialized
shaders

Write all shaders in GLSL, compile to
Metal / Vulkan

GLSL

T

Stage 1
Compiler
SPIRV
Stage 2
Compiler Reflector
Sources Sources
=,
_ Binder
Metal Linker Source Set
. Ninja Build
Metal Library System for
Engine
\/\

Lessons 1. Declarative UI won
2. Frameworks limit performance

3. Compilers are back
4.
5.

LLesson 4: End of end of history (viz Java)
Programming peclarative Ul: Functional reactive

languages programming (FRP)
are back?! Declarative syntax requiring language
work

Are all languages the same?
Dart, Swift

LLesson 4: Types! Swift, Dart, TypeScript
Programming (o-design of language with plaform

languages x Dart went sound and null-safe for
are back?! better AOT performance and binary
s1ze

Shift from run-times to compilers

Lessons 1. Declarative UI won
2. Frameworks limit performance

3. Compilers are back
4. Programming languages are back?!

5.

LLesson 5: Marginal cross-platform app

There’s no development, viz Signal
winner yet Even relative winners have “new
architecture”

& React Native: Fabric
2 Flutter: Impeller

Froth in JavaScript space: new winner
every other year

Flutter bundles the kitchen sink

LLesson 5: Lots of awkward choices

There’s no a Jetpack Compose
winner yet a ArKTS eTS
2 React Native / Hermes needing
transpilers

“Do we know how to build apps?”

Lessons 1. Declarative UI won
2. Frameworks limit performance
3. Compilers are back
4. Programming languages are back?!
5. No winner yet
There 1s space for something else

What is to
be done?

What i1s to Use Flutter
be done?

What is to Use Flutter
be done? Caveats: Text, Impeller, Google

What is to

be done?
N Signal- Signal- Signal-

Java / Kotlin TypeScript /

avascript
350 J 250 ° Java EE

KSLOC KSLOC

LibSignal (Rust)

With thanks to Yong He from Futurewel

Rust?!?

Slgnal- Sighal-

TypeScript /

Sighal-
Server

JavaScript Java EE

250
KSLOC

LibSignal (Rust)

With thanks to Yong He from Futurewel

Future 1: Declarative: Dioxus, dioxuslabs. com

Rust fn app(cx: Scope) -> Element {
cXx.render(rsx!{
div {
"Hello, world!"
}
})
}

Experimental WebGPU backend
Other options out there

Future 1: State story limited (same as React)
Rust Compilers? Yes! Predictable AOT

Language: lightweight
experimentation via macros; rsx!

Flutter on Rust 1s great pitch

Future 2

Future 2: JS Ride wave of JavaScript popularity

Lots of activity: NativeScript,
Capacitor, React Native, ...

Native widgets: NativeScript, React
Native

AOT compilation: ~NativeScript, React
Native

Still room for new frameworks

Future 2: JS Risk: you sail in the wake of a big ship

Flutter’s choice to abandon JS
understandable though also risky

Far-sighted option: sound typing for
TypeScript

Future 3 What does Flutter need from a
platform? Build that

Future 3: ..and WebHID and ARIA and
Wasm and WebBluetooth and...

WebGPU Pitch: commoditize platforms by
providing same binary ABI

User apps are Wasm modules that
import WebGPU et al capabilities

Efficient interoperation facilitated by
GC in WebAssembly 2.0

Summary Apps at the end of the end of history

4 Declarative
- Platform / language codesign

Strong cross-platform contenders:
React Native and Flutter

There 1s room for more

Crystal ball: in 2y, Flutter in Rust; in
5y, sound TypeScript AOT

To read more: wingolog.org

