
Cross-Platform
Mobile UI
“Compilers, Compilers Everywhere”

27 June 2023 – EOSS Prague

Andy Wingo

Igalia, S.L.

Apps apps
apps

This is a talk about apps; good apps

And compilers; weird compilers

And open source, cross-platform app
frameworks

And the unexpected end of the end of
history

Do we know
how to
make apps?

SwiftUI❧

React Native❧

Java and Android views❧

Jetpack Compose❧

OpenGL / Vulkan❧

AppKit❧

Capacitor❧

NativeScript❧

Flutter❧

UIKit❧

Step back I.M.H.O.—H before the O

Observe and learn: look for meaning
and motivation

Come back with lessons, then apply
them to now

Lessons 1.

2.

3.

4.

5.

Lesson 1 The old thing: stateful widget trees
var count = 0
let stack = new VStack
let text = new Text("Count: \(count)")
stack.add_child(text)
let button = new Button("Increment")
button.set_onclick(||
 count += 1
 text.set_text("Count: \(count)")
)
stack.add_child(button)

https://raphlinus.github.io/ui/
druid/2019/11/22/reactive-ui.html

Lesson 1:
Declarative
UI won on
the web

The newer thing: Declarative UI

2013: React
function Hello({ name }) {
 return (
 <p>Hello from React, {name}!</p>
);
}

UI is a function: translate state to
immutable tree of elements

Nowadays many derivatives of this
paradigm

Lesson 1:
Declarative
UI won on
Android

2019: Jetpack Compose
@Composable
fun MessageCard(name: String) {
 Text(text = "Hello from " +
 "Jetpack Compose, $name!");
}

Sometimes UI tree implicitly collected
instead of returned

Lesson 1:
Declarative
UI won on
iOS

2019: SwiftUI
struct ContentView: view {
 var name: String
 var body: some View {
 Text("Hello from SwiftUI, \(name)!")
 .padding()
 }
}

Particularly lovely ergonomics

Lesson 1:
Declarative
UI won,
cross-
platform

2017: Flutter
class Hello extends StatelessWidget {
 const Hello({required this.name,
 super.key});
 final String name;

 @override
 Widget build(BuildContext context) {
 return Text('Hello from Flutter,'
 + '$name!');
 }
}

Even when people abstract away from
platform, they go declarative

Lesson 1:
Declarative
UI won

But why? 3 reasons

Managers like it: Decompose UI
into org chart (Conway’s law)

❧

Comprehensively avoid view/model
state mismatch

❧

Developers seem to like it too❧

Lessons 1. Declarative UI won

2.

3.

4.

5.

Lesson 2 The rise of the framework

Developer declares UI❧

Framework translates to imperative
operations on e.g. GPU

❧

Framework determines when UI
needs recomputation

❧

Observation: UI tree computation O(n)
in UI size

How to avoid performance disaster?

Lesson 2:
Frameworks
limit
performance

Division of labor: app developers say
what, framework developers say how

Risky bargain

4 main techniques

Managed state❧

Incremental render❧

Concurrent render❧

Concurrent GC❧

Lesson 2:
Frameworks
limit
performance

Technique 1: Managed state

Framework re-renders only when
needed
function Hello({ name }) {
 const [count, setCount] = useState(0);
 function inc() {
 setCount(x => x+1);
 }
 return (
 <div>
 <p>Count: {count}</p>
 <button onclick={inc}>+1</button>
 </div>
);
}

Lesson 2:
Frameworks
limit
performance

Technique 2: Incremental render

Functional on top, but always
imperative underneath

Web: DOM❧

React Native: UIKit / Android view
tree

❧

Flutter: GPU pipeline objects❧

Don’t recreate whole DOM on each
frame: just apply changes
Pixels[N+1] := Pixels[N] +
 Diff(UI[N+1], UI[N])

Lesson 2:
Frameworks
limit
performance

Technique 3: Concurrent render

Basic: Build UI on one thread, render
to GPU/DOM on another

Hard on the web, easier on mobile

Limited gains for per-frame
concurrency

Lesson 2:
Frameworks
limit
performance

Technique 4: Concurrent GC

Concurrent: Runs while program runs.
Move O(n) trace off main thread

Without concurrent GC:
// UI thread
frame . frame . frame . pause: trace+finish . frame

With concurrent GC:
// UI thread
frame . frame . frame . pause: finish . frame
// GC thread
 trace.................

Reduce long-pole GC pause

Lesson 2:
Frameworks
limit
performance

Providing good performance is a
framework concern

Frameworks nudge app developers
into good performance patterns

Frameworks limit performance too

Lessons 1. Declarative UI won

2. Frameworks limit performance

3.

4.

5.

Lesson 3

Lesson 3:
Compilers
are back

Example 1: Front-end
@Composable
fun MessageCard(name: String) {
 Text(text = "Hello from " +
 "Jetpack Compose, $name!");
}

@Composable decorator: make it look
like you declare a tree, but compile to
imperative operations

Lesson 3:
Compilers
are back

Not just Jetpack Compose

SwiftUI ResultBuilder❧

HarmonyOS ArkUI with “eTS”❧

React JSX❧

Compilers are a core part of the
modern UI story

To work in this space: control the
means of production

Lesson 3:
Compilers
are back

Example 2: Deployment

Problem: Minimize startup latency,
maximize runtime predictability

Trend: Move to ahead-of-time
compilation

React Native Hermes❧

Panda ArkTS (without eval!)❧

Dart AOT❧

Predictability over performance

Lesson 3:
Compilers
are back

Example 3: Graphics

Lesson 3:
Compilers
are back

Flutter Impeller: Compile shaders
ahead-of-time, not at run-time

Requires different rendering backend:
tesselate into many primitive triangles
instead of generating specialized
shaders

Write all shaders in GLSL, compile to
Metal / Vulkan

Lessons 1. Declarative UI won

2. Frameworks limit performance

3. Compilers are back

4.

5.

Lesson 4:
Programming
languages
are back?!

End of end of history (viz Java)

Declarative UI: Functional reactive
programming (FRP)

Declarative syntax requiring language
work

Are all languages the same?

Dart, Swift

Lesson 4:
Programming
languages
are back?!

Types! Swift, Dart, TypeScript

Co-design of language with plaform

Dart went sound and null-safe for
better AOT performance and binary
size

❧

Shift from run-times to compilers

Lessons 1. Declarative UI won

2. Frameworks limit performance

3. Compilers are back

4. Programming languages are back?!

5.

Lesson 5:
There’s no
winner yet

Marginal cross-platform app
development, viz Signal

Even relative winners have “new
architecture”

React Native: Fabric❧

Flutter: Impeller❧

Froth in JavaScript space: new winner
every other year

Flutter bundles the kitchen sink

Lesson 5:
There’s no
winner yet

Lots of awkward choices

Jetpack Compose❧

ArkTS eTS❧

React Native / Hermes needing
transpilers

❧

“Do we know how to build apps?”

Lessons 1. Declarative UI won

2. Frameworks limit performance

3. Compilers are back

4. Programming languages are back?!

5. No winner yet

There is space for something else

What is to
be done?

What is to
be done?

Use Flutter

What is to
be done?

Use Flutter

Caveats: Text, Impeller, Google

What is to
be done?

Rust?!?

Future 1:
Rust

Declarative: Dioxus, dioxuslabs.com
fn app(cx: Scope) -> Element {
 cx.render(rsx!{
 div {
 "Hello, world!"
 }
 })
}

Experimental WebGPU backend

Other options out there

Future 1:
Rust

State story limited (same as React)

Compilers? Yes! Predictable AOT

Language: lightweight
experimentation via macros; rsx!

Flutter on Rust is great pitch

Future 2

Future 2: JS Ride wave of JavaScript popularity

Lots of activity: NativeScript,
Capacitor, React Native, ...

Native widgets: NativeScript, React
Native

AOT compilation: ~NativeScript, React
Native

Still room for new frameworks

Future 2: JS Risk: you sail in the wake of a big ship

Flutter’s choice to abandon JS
understandable though also risky

Far-sighted option: sound typing for
TypeScript

Future 3 What does Flutter need from a
platform? Build that

Future 3:
Wasm and
WebGPU

...and WebHID and ARIA and
WebBluetooth and...

Pitch: commoditize platforms by
providing same binary ABI

User apps are Wasm modules that
import WebGPU et al capabilities

Efficient interoperation facilitated by
GC in WebAssembly 2.0

Summary Apps at the end of the end of history

Declarative❧

Platform / language codesign❧

Strong cross-platform contenders:
React Native and Flutter

There is room for more

Crystal ball: in 2y, Flutter in Rust; in
5y, sound TypeScript AOT

To read more: wingolog.org

