
A world to win
WebAssembly for the rest of us

17 Mar 2023 – BOB 2023

Andy Wingo

Igalia, S.L.

WebAssembly,
the story

WebAssembly is an exciting new
universal compute platform

WebAssembly,
the pitch

Predictable portable performance

Low-level❧

Within 10% of native❧

Reliable composition via isolation

Modules share nothing by default❧

No nasal demons❧

Memory sandboxing❧

Compile your code to WebAssembly
for easier distribution and composition

WebAssembly,
the hype

It’s in all browsers! Serve your code to
anyone in the world!

It’s on the edge! Run code from your
web site close to your users!

Compose a library (eg: Expat) into
your program (eg: Firefox), without
risk!

It’s the new lightweight virtualization:
Wasm is what containers were to VMs!
Give me that Kubernetes cash!!!

WebAssembly,
the reality

WebAssembly is a weird backend for a
C compiler

Only some source languages are having
success on WebAssembly

What about Haskell, Ocaml, Scheme,
F#, and so on – what about us?

Are we just lazy? (Well...)

WebAssembly,
the reality
(2)

WebAssembly (1.0, 2.0) is not well-
suited to garbage-collected languages

Let’s look into why

GC and
WebAssembly
1.0

Where do garbage-collected values
live?

For WebAssembly 1.0, only possible
answer: linear memory
(module
 (global $hp (mut i32) (i32.const 0))
 (memory $mem 10)) ;; 640 kB

(func $alloc (param $size i32) (result i32)
 (local $ret i32)
 (loop $retry
 (local.set $ret (global.get $hp))
 (global.set $hp
 (i32.add (local.get $size) (local.get $ret)))

 (br_if 1
 (i32.lt_u (i32.shr_u (global.get $hp) 16)
 (memory.size))
 (local.get $ret))

 (call $gc)
 (br $retry)))

GC and
WebAssembly
1.0 (2)

What hides behind (call $gc) ?

Ship a GC over linear memory

Stop-the-world, not parallel, not
concurrent

But... roots.

GC and
WebAssembly
1.0 (3)

Live objects are

the roots❧

any object referenced by a live
object

❧

Roots are globals and locals in active
stack frames

No way to visit active stack
frames

GC and
WebAssembly
1.0 (3)

Workarounds

handle stack for precise roots❧

spill all possibly-pointer values to
linear memory and collect
conservatively

❧

Handle book-keeping a drag for
compiled code

GC and
WebAssembly
1.0 (4)

Cycles with external objects (e.g.
JavaScript) uncollectable

A pointer to a GC-managed object is an
offset to linear memory, need
capability over linear memory to read/
write object from outside world

No way to give back memory to the OS

Gut check: gut says no

GC and
WebAssembly
1.0 (5)

There is already a high-performance
concurrent parallel compacting GC in
the browser

Halftime: C++ 1 – Altlangs 0

Change is
coming!

Support for built-in GC set to ship in
Q4 2023

With GC, the material conditions are
now in place

Let’s compile our languages to
WebAssembly

Scheme to
Wasm

Spritely + Igalia working on Scheme to
WebAssembly

Avoid truncating language to platform;
bring whole self

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm:
Values

;; any extern func
;; |
;; eq
;; / | \
;; i31 struct array

The unitype: (ref eq)

Immediate values in (ref i31)

fixnums with 30-bit range❧

chars, bools, etc❧

Explicit nullability: (ref null eq) vs
(ref eq)

Scheme to
Wasm:
Values (2)

Heap objects subtypes of struct;
concretely:
(struct $heap-object
 (struct (field $tag-and-hash i32)))
(struct $pair
 (sub $heap-object
 (struct i32 (ref eq) (ref eq))))

GC proposal allows subtyping on
structs, functions, arrays

Structural type equivalance: explicit
tag useful

Scheme to
Wasm:
Values (3)

(func $cons (param (ref eq)
 (ref eq))
 (result (ref $pair))
 (struct.new_canon $pair
 ;; Assume heap tag for pairs is 1.
 (i32.const 1)
 ;; Car and cdr.
 (local.get 0)
 (local.get 1)))

(func $%car (param (ref $pair))
 (result (ref eq))
 (struct.get $pair 1 (local.get 0)))

(func $car (param (ref eq)) (result (ref eq))
 (local (ref $pair))
 (block $not-pair
 (br_if $not-pair
 (i32.eqz (ref.test $pair (local.get 0))))
 (local.set 1 (ref.cast $pair) (local.get 0))
 (br_if $not-pair
 (i32.ne
 (i32.const 1)
 (i32.and
 (i32.const 0xff)
 (struct.get $heap-object 0 (local.get 1)))))
 (return_call $%car (local.get 1)))

 (call $type-error)
 (unreachable))

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm:
Varargs

(list 'hey) ;; => (hey)
(list 'hey 'bob) ;; => (hey bob)

Problem: Wasm functions strongly
typed
(func $list (param ???) (result (ref eq))
 ???)

Solution: Virtualize calling convention

;; "Registers" for args 0 to 3
(global $arg0 (mut (ref eq)) (i31.new (i32.const 0)))
(global $arg1 (mut (ref eq)) (i31.new (i32.const 0)))
(global $arg2 (mut (ref eq)) (i31.new (i32.const 0)))
(global $arg3 (mut (ref eq)) (i31.new (i32.const 0)))

;; "Memory" for the rest
(type $argv (array (ref eq)))
(global $argN (ref $argv)
 (array.new_canon_default
 $argv (i31.const 42) (i31.new (i32.const 0))))

Uniform function type: argument count as sole parameter

Callee moves args to locals, possibly clearing roots

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm: Tail
calls

;; Call known function
(return_call $f arg ...)

;; Call function by value
(return_call_ref $type callee arg ...)

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm:
Prompts (1)

Problem: Lightweight threads/fibers,
exceptions

Possible solutions

Eventually, built-in coroutines❧

https://github.com/
WebAssembly/binaryen’s asyncify
(not yet ready for GC); see Julia

❧

Delimited continuations❧

“Bring your whole self”

Scheme to
Wasm:
Prompts (2)

Prompts delimit continuations
(define k
 (call-with-prompt 'foo
 ; body
 (lambda ()
 (+ 34 (abort-to-prompt 'foo)))
 ; handler
 (lambda (continuation)
 continuation)))

(k 10) ;; ⇒ 44
(- (k 10) 2) ;; ⇒ 42

k is the _ in (lambda () (+ 34 _))

Scheme to
Wasm:
Prompts (3)

Delimited continuations are stack
slices

Make stack explicit via minimal
continuation-passing-style conversion

Turn all calls into tail calls❧

Allocate return continuations on
explicit stack

❧

Breaks functions into pieces at non-
tail calls

❧

Scheme to
Wasm:
Prompts (4)

Before a non-tail-call:

Push live-out vars on stacks (one
stack per top type)

❧

Push continuation as funcref❧

Tail-call callee❧

Return from call via pop and tail call:
(return_call_ref (call $pop-return)
 (i32.const 0))

After return, continuation pops state
from stacks

Scheme to
Wasm:
Prompts (5)

abort-to-prompt:

Pop stack slice to reified
continuation object

❧

Tail-call new top of stack: prompt
handler

❧

Calling a reified continuation:

Push stack slice❧

Tail-call new top of stack❧

No need to wait for effect handlers
proposal; you can have it all now!

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Scheme to
Wasm:
Numbers

Numbers can be immediate: fixnums

Or on the heap: bignums, fractions,
flonums, complex

Supertype is still ref eq

Consider imports to implement
bignums

On web: BigInt❧

On edge: Wasm support module
(mini-gmp?)

❧

Dynamic dispatch for polymorphic
ops, as usual

Scheme to
Wasm

Value representation❧

Varargs❧

Tail calls❧

Delimited continuations❧

Numeric tower❧

Miscellenea Debugging: The wild west of DWARF;
prompts

Strings: stringref host strings spark
joy

JS interop: Export accessors; Wasm
objects opaque to JS. externref.

JIT: A whole ’nother talk! https://
wingolog.org/archives/2022/08/18/
just-in-time-code-generation-
within-webassembly

AOT: wasm2c

WebAssembly
for the rest
of us

With GC, WebAssembly is now ready
for us

Getting our languages on
WebAssembly now a S.M.O.P.

Let’s score some goals in the second
half!
(visit-links
 "gitlab.com/spritely/guile-hoot-updates"
 "wingolog.org"
 "wingo@igalia.com"
 "igalia.com"
 "mastodon.social/@wingo")

