
Delimited Continuations
The Bee’s Knees
Quasiconf 2012

Andy Wingo



1

0.1 A poll

How many of you use call/cc and continuation objects in large programs?

Do “we” really use it to implement coroutines and backtracking and threads and whatever?

Is call/cc necessary for Scheme?

0.2 Heresy

Those questions originally raised by racketeer Matthias Felleisen in 2000

Thesis of this presentation: call/cc bad, delimited continuations good

Felleisen has authored many papers on continuations.

Incidentally, he is also the first published author on delimited continuations.

See also http://okmij.org/ftp/continuations/against-callcc.html and
http://srfi.schemers.org/srfi-18/mail-archive/msg00013.html.

0.3 Against call/cc (1)

Requires set! to do almost anything with multiple returns

Passing arguments to continuations: manual CPS

set! plus continuations is a common way to emulate delimited continuations

0.4 Against call/cc (2)

“A global goto with arguments”

Captured continuations do not compose with current continuation:

(call/cc (lambda (k) (k (k 1))))

Oleg: “Call/cc is a bad abstraction.”

In practice, if not trivial, terribly confusing.

0.5 Against call/cc (3)

Delimited in practice...

...but where?

Almost always too much

0.6 Scheme deserves better

Delimited continuations

Sitaram 1993: “Handling Control”

http://www.ccs.neu.edu/scheme/pubs/pldi93-sitaram.pdf

Felleisen 1988: “The theory and practice of first-class prompts”

http://www.cs.tufts.edu/~nr/cs257/archive/matthias-felleisen/prompts.pdf

http://okmij.org/ftp/continuations/against-callcc.html
http://srfi.schemers.org/srfi-18/mail-archive/msg00013.html
http://www.ccs.neu.edu/scheme/pubs/pldi93-sitaram.pdf
http://www.cs.tufts.edu/~nr/cs257/archive/matthias-felleisen/prompts.pdf


2

0.7 Bibliography, ctd

Flatt et al 2007: “Adding Delimited and Composable Control to a Production Programming
Environment.”

http://www.cs.utah.edu/plt/publications/icfp07-fyff.pdf

Dybvig, Peyton-Jones, and Sabry 2007: “A monadic framework for delimited continuations”

http://www.cs.indiana.edu/~dyb/pubs/monadicDC.pdf

Academically validated!

0.8 Example.

(use-modules (ice-9 control))

(% (+ 1 (abort)) ; body

(lambda (k) k)) ; handler

% pronounced "prompt"

What is captured:

(+ 1 [])

Wrapped in a function:

(lambda vals (+ 1 (apply values vals)))

Think tcsh for the prompt.

Guile’s abort is Sitaram’s control.

0.9 Compositional

A function, not a global goto

(let ((k (% (+ 1 (abort))

(lambda (k) k))))

(k (k 1)))

= ((lambda vals (+ 1 (apply vals vals)))

((lambda vals (+ 1 (apply vals vals)))

1))

= (+ 1 (+ 1 1))

= 3

0.10 Analogy with shell

fork/exec : coredump :: % : abort

Differences

• “Cores” from delimited continuations aren’t dead

• More expressive value passing

• Nestable

• The language, not the system

http://www.cs.utah.edu/plt/publications/icfp07-fyff.pdf
http://www.cs.indiana.edu/~dyb/pubs/monadicDC.pdf


3

0.11 Tags

(% tag body handler)

(define-syntax-rule (let/ec k exp)

(let ((tag (make-prompt-tag)))

(% tag

(let ((k (lambda args

(apply abort-to-prompt

tag

args))))

exp)

(lambda (k . vals)

(apply values vals)))))

0.12 Optimizations

Escape-only prompts

• Handler like (lambda (k v ...) ...), k unreferenced

• Implementable with setjmp/longjmp, no heap allocation

0.13 Optimizations

Prompt elision

• (% (make-prompt-tag) exp h) = exp

• Result of inlining (let/ec k body), k unreferenced in body

• Provide break, no cost if unused

0.14 Optimizations

Local CPS

Fundamentally dynamic: hence “dynamic control”

0.15 Mental model

Aborting to escape-only prompt: longjmp

Aborting to general prompt

• Copy of stack between prompt and abort

• Copy of dynamic bindings in same

Calling delimited continuation: splat stack, augment dynamic environment

0.16 Other names

“Composable continuations”

“Partial continuations”



4

0.17 Other formalisms

% / abort

% / control

call-with-prompt / abort-to-prompt

reset / shift

set / cupto

All equivalent

0.18 Limitations

Calling a delimited continuation composes two continuations: one stays in place, the other
is pushed on

No way to use copying of C stack to do this: C stack frames are not relocatable

No standard way to capture continuation without unwinding to prompt

0.19 But what do I do with it?

A prompt is a boundary between programs

Prompts best conceived as concurrency primitives

The REPL and your code run concurrently

0.20 Node with automatic CPS

Delimited continuations: the ideal building block for lightweight threads

Set file descriptors to non-blocking

If EWOULDBLOCK, abort

Scheduler installs prompt, runs processes

0.21 (ice-9 nio)

nio-read

0.22 (ice-9 eports)

fdes->eport

file-port->eport

accept-eport

connect-eport

get-u8, etc

0.23 (ice-9 ethreads)

run

spawn, suspend, resume, sleep



5

0.24 memcached-server.scm (1)

(define (socket-loop esocket store)

(let loop ()

(let ((client (accept-eport esocket)))

(spawn (lambda ()

(client-loop client store)))

(loop))))

0.25 memcached-server.scm (2)

(define (client-loop eport store)

(let loop ()

(let* ((args (string-split

(read-line eport) #\space))

(verb (string->symbol (car args)))

(proc (hashq-ref *commands* verb)))

(unless proc

(client-error eport "Bad: ~a" verb))

(proc eport store (cdr args)))

(drain-output eport)

(if (eof-object? (lookahead-u8 eport))

(close-eport eport)

(loop))))

0.26

0.27 questions?

• Guile: http://gnu.org/s/guile/

• Prompts: http://www.gnu.org/software/guile/manual/html_node/Prompts.html

• Ethreads branch: wip-ethreads in Guile

• Words: http://wingolog.org/

• Slides: http://wingolog.org/pub/qc-2012-delimited-continuations-slides.pdf

• Notes: http://wingolog.org/pub/qc-2012-delimited-continuations-notes.pdf

http://gnu.org/s/guile/
http://www.gnu.org/software/guile/manual/html_node/Prompts.html
http://wingolog.org/
http://wingolog.org/pub/qc-2012-delimited-continuations-slides.pdf
http://wingolog.org/pub/qc-2012-delimited-continuations-notes.pdf

