
Self-Hosted
Scripting in Guile
Fast Start with ELF and DWARF

Andy Wingo — Igalia, S.L.

@andywingo / wingolog.org



Self-hosted runtimes can be
heavy
Wanted:

Fast start❧

Scripting source model❧

Self-hosted runtime, compiler, interpreter❧

C: No source model (not scripting)

Lua: VM written in C (not self-hosted)

Guile: All three?



Challenge: Start Time
Fast start for:

Runtime❧

Interpreter/Compiler❧

Debugger❧

LuaJIT does not have this problem; runtime in
C, user code is first and only Lua

Tension with debuggability: metadata takes
space, may take time

As program grows, more of it becomes
“runtime”



ELF and DWARF help start
time
Agenda:

ELF and DWARF background❧

How Guile uses ELF and DWARF❧

Evaluation: Guile 2.2 (with ELF) vs 2.0
(without)

❧



ELF
UNIX object file format

Intermediate build products (.o files)❧

Shared libraries for dynamic linking (.so
files)

❧

Executables (standalone, or dynamically
linked)

❧

Two perspectives on ELF: loader vs inspection



Loading ELF
“What’s the least work needed to load this .so?”

In Linux, system loader is ld.so by default

Read fixed-size header, check it’s ELF &
right arch

❧

Read array of segments of file to mmap into
memory

❧

Perform relocations, if needed❧

Compiler and linker’s job to limit run-time
relocation work

System loader not hard-coded!



Working with ELF
“What’s in this damn thing?”

Array of named section descriptors at back of
file

Sections may be in file but outside any segment:
never mapped by loader

Some section names are well-known (.data,
.text)

Open, extensible set of section names





DWARF
UNIX debugging information format

Debugging information: ancillary metadata
about program

Implementation: ELF sections with well-known
names



What DWARF does
PC-to-source mapping

Inventory of functions and methods in text

Inventory of types used by text

Info about function arguments, locals, their
scopes, etc

How to find locals in a function activation

How to find previous stack frame



DWARF design point
Ancillary: can be stripped from object file
without changing semantics

Links never go from text to debuginfo❧

Space-optimized

Speed of loading is important too (e.g. when
debugging big C++ programs with GDB), but
not primary



ELF and DWARF in Guile
Lazy caching compiler (think .pyc)

Guile compiler/linker emits ELF and DWARF

Guile loader loads Guile’s ELF

Guile debugger reads DWARF

No dep on system linker/loader/debugger

Additional custom ELF sections for speed-
sensitive side tables (e.g. stack map)



Loading in Guile
Map whole file as read-only

Read table of segments, making some private
writable (mprotect)

Process directives in PT_DYNAMIC segment

Check Guile VM version❧

Find relocation thunk❧

Add GC roots❧

Find stack maps❧

Run relocation thunk



Benefits of ELF to Guile
Static allocation of constants, other data

Constants not needing relocation stay shareable
and read-only

Strippable debug info

No heap-allocated metadata



Indirect benefits of ELF
Removal of procedure objects; no need for heap
object to point at debug info

Support for unboxed locals and precise local
lifetimes (raw / unused / live / dead slot map)

Closure optimization (no need for distinguished
parameter 0)



GC implications
Loading adds GC roots

Guile-specific section for stack maps for precise
stack GC

ELF mappings themselves not yet collectable



Future plans
Aggregating separately-compiled modules
together (linker hack)

Linking static binary

Embed IR or source in object file?

AOT native code generation

All enabled by ELF’s flexible sections and
segments model



Evaluation



Evaluation
guile -c '(sleep 100)'

Guile 2.0 (pre-ELF)

11 object files, 8.0e3 SLOC❧

12.5ms startup❧

3244 KB private dirty memory❧

Guile 2.2 (ELF and DWARF)

20 object files (+81%), 9.8e3 SLOC (+22%)❧

10.3ms startup (-18%)❧

2720 KB private dirty memory (-16%)❧



Summary
Dynamic VMs can start fast!

ELF and DWARF embody UNIX experience:
how to minimize startup work

Steal the good ideas from ELF, but implement
your own linker/loader/debugger

http://gnu.org/s/guile/❧

http://wingolog.org/❧

@andywingo❧

http://igalia.com/compilers/❧


