
Optimizing with
persistent data
structures
Adventures in CPS soup

Andy Wingo ~ wingo@igalia.com

wingolog.org ~ @andywingo

Agenda
SSA and CPS: Tribal lore

A modern CPS

Programs as values: structure

Programs as values: transformation

Evaluation

How we got here
1928 Hilbert: Can has
Entscheidungsproblem?

1936 Church: Nope!

Also here is the lambda calculus

For identifiers x and terms t and s, a term is
either

A variable reference: x❧

A lambda abstraction: λx. t❧

An application: (t s)❧

Computing with lambda
Lambda abstractions bind variables lexically

To compute with the lambda calculus:

take a term and reduce it, exhaustively❧

Sounds like compilation, right?

GOTO?
1958McCarthy: Hey the lambda calculus is
not bad for performing computation!

1965 Landin: Hey we can understand ALGOL
60 using the lambda calculus!

What about GOTO?

Landin: J operator captures state of SECD
machine that can be returned to later

To J or not to J
1964 van Wijngaarden: Not to J!

Just transform your program

1970 F. Lockwood Morris: Re-discovers
program transformation

(Iinspired by LISP 1.5 code!)

function f()
 local x = foo() ? y() : z();
 return x
end

function f(k)
 function ktest(val)
 function kt() return y(kret) end
 function kf() return z(kret) end
 if val then return kt() else return kf() end
 end
 function kret(x) return k(x) end
 return foo(ktest)
end

Nota bene
function kt() return y(kret) end

All calls are tail calls

1970 Chris Wadsworth: Hey! Result of the
Morris transformation is the continuation:
the meaning of the rest of the program

Function calls are passed an extra argument:
the continuation

Variables bound by continuations

Compiling with CPS
1977 Guy Steele: Hey we can compile with
this!

Tail calls are literally GOTO, potentially passing
values.

1978 Guy Steele: RABBIT Scheme compiler
using CPS as IL

Rewrite so all calls are tail calls, compile as
jumps

1984 David Kranz: ORBIT Scheme compiler
using CPS, even for register allocation

What’s missing?
1970 Fran Allen and John Cocke: Flow
analysis

Both Turing award winners!

Range checking, GCSE, DCE, code motion,
strength reduction, constant propagation,
scheduling

Flow analysis for CPS
1984 Shivers: Whoops this is hard

Flow analysis in CPS: given (f x), what values
flow to f and x?
For data-flow analysis, you need control-flow
analysis

For control-flow analysis, you need data-flow
analysis

Solution 1: k-CFA
Solve both problems at once

1991 Shivers: k-CFA family of higher-order
flow analysis

Based on CPS

Parameterized by precision

0-CFA: first order, quadratic...❧

1-CFA: second order, exponential!❧

k-CFA: order k, exponential❧

2009 Van Horn: k > 0 intractable

Solution 2: Some conts are
labels
Observation: Lambda terms in CPS are of
three kinds

Procs
Entry points to functions of source program
function f(k)
 function ktest(val)
 function kt() return y(kret) end
 function kf() return z(kret) end
 if val then return kt() else return kf() end
 end
 function kret(x) return k(x) end
 return foo(ktest)
end

Conts
Return points from calls; synthetic
function f(k)
 function ktest(val)
 function kt() return y(kret) end
 function kf() return z(kret) end
 if val then return kt() else return kf() end
 end
 function kret(x) return k(x) end
 return foo(ktest)
end

Jumps
Jump targets; synthetic
function f(k)
 function ktest(val)
 function kt() return y(kret) end
 function kf() return z(kret) end
 if val then return kt() else return kf() end
 end
 function kret(x) return k(x) end
 return foo(ktest)
end

Solution 2: Some conts are
labels
1995 Kelsey: “In terms of compilation
strategy, conts are return points, jumps can
be compiled as gotos, and procs require a
complete procedure-call mechanism.”

Separate control and data flow

1992 Appel, “Compiling with Continuations”
(ML)

What about SSA?
1986-1988 Rosen, Wegman, Ferrante, Cytron,
Zadeck: “Binding, not assignment”

“The right number of names”

Better notation makes it easier to transform
programs

Initial application of SSA was GVN

SSA and CPS
1995 Kelsey: “Making [continuation uses]
syntactically distinct restricts how
continuations are used and makes CPS and
SSA entirely equivalent.”

SSA: Definitions must dominate uses

CPS embeds static proof of SSA condition: all
uses must be in scope

1998 Appel: “SSA is Functional Programming”

Modern CPS
2007 Kennedy: Compiling with
Continuations, Continued

Nested scope

Syntactic difference between continuations
(control) and variables (data)

Why CPS in 2016?
SSA: How do I compile loops?

CPS: How do I compile functions?

“Get you a compiler that can do both”

Example: Contification
A function or clique of functions that always
continues to the same label (calls the same
continuation) can be integrated into the
caller

Like inlining, widens first-order flow graph: a
mother optimization

Unlike inlining, always a good idea: always a
reduction

CPS facilitates contification
Concept of continuation❧

Globally unique labels and variable names❧

Interprocedural scope❧

Single term for program❧

Possible in SSA too of course

And yet
CPS: all uses must be in scope... but not all
dominating definitions are in scope

Transformations can corrupt scope tree
function b0(k)
 function k1(v1) return k2() end
 function k2() return k(v1) end # XX
 k1(42)
end

1999 Fluet and Weeks: MLton switches to
SSA

Alternate solution: CPS
without nesting
Values in scope are values that dominate

Program is soup of continuations

“CPS soup”

CPS in Guile
(define-type Label Natural)

(struct Program
 ([entry : Label]
 [conts : (Map Label Cont)]))

Conts
(define-type Var Natural)
(define-type Vars (Listof Var))

(struct KEntry
 ([body : Label] [exit : Label]))
(struct KExpr
 ([vars : Vars] [k : Label] [exp : Exp]))
(struct KExit)

(define-type Cont (U KEntry KExpr KExit))

Exps
(define-type Op (U 'lookup 'add1 ...))

(struct Primcall ([op : Op] [args : Vars]))
(struct Branch ([kt : Label] [exp : Expr]))
(struct Call ([proc : Var] [args : Vars]))
(struct Const ([val : Literal]))
(struct Func ([entry : Label]))
(struct Values ([args : Vars]))

(define-type Exp
 (U Primcall Branch Call Const Func Values))

See language/cps.scm for full details

;; (lambda () (if (foo) (y) #f))

(Map
 (k0 (KEntry k1 k10))
 (k1 (KExpr () k2 (Const 'foo)))
 (k2 (KExpr (v0) k3 (Primcall 'lookup (v0))))
 (k3 (KExpr (v1) k4 (Call v1 ())))
 (k4 (KExpr (v2) k5 (Branch k8 (Values (v1)))))
 (k5 (KExpr () k6 (Const 'y)))
 (k6 (KExpr (v3) k7 (Primcall 'lookup (v3))))
 (k7 (KExpr (v4) k10 (Call v4 ())))
 (k8 (KExpr () k9 (Const #f)))
 (k9 (KExpr (v5) k10 (Values (v5))))
 (k10 (KExit)))

Salient details
Variables available for use a flow property

Variables bound by KExpr; values given by
predecessors

Expressions have labels and continue to
other labels

Return by continuing to the label identifying
function’s KExit

Orders of CPS
Two phases in Guile

Higher-order: Variables in “outer”
functions may be referenced directly by
“inner” functions; primitive support for
recursive function binding forms

❧

First-order: Closure representations
chosen, free variables (if any) accessed
through closure

❧

“[Interprocedural] binding is better than
assignment”

About those maps
(struct (v) IntMap
 ([min : Natural]
 [shift : Natural]
 [root : (U (Maybe v) (Branch v))]))
(define-type (Branch v)
 (U (Vectorof (Maybe Branch))
 (Vectorof (Maybe v))))

Shift 0 and root empty? {}

Shift 0? {min: valueof(root)}
Otherwise element i of root[i] is root for min
+i*2^(shift-5), at shift-5.

Bagwell AMTs
Array Mapped Trie

Clojure-inspired data structures invented by
Phil Bagwell

O(n log n) in size

Ref and update O(log n)
Visit-each near-linear

Unions and intersections very cheap

Clojure innovation
clojure.org/transients: Principled in-place
mutation
(define (intmap-map proc map)
 (persistent-intmap
 (intmap-fold
 (lambda (k v out)
 (intmap-add! out k (proc k v)))
 map
 (transient-intmap empty-intmap))))

Still O(n log n) but significant constant factor
savings

Intsets
“Which labels are in this function?”
(struct IntSet
 ([min : Natural]
 [shift : Natural]
 [root : (U Leaf Branch)]))
(define-type Leaf UInt32)
(define-type Branch
 (U (Vectorof (Maybe Branch))
 (Vectorof Leaf)))

Transient variants as well

Optimizing with persistent
data structures
Example optimization: “Unboxing”

Objective: use specific limited-precision
machine numbers instead of arbitrary-
precision polymorphic numbers

function unbox_pass(conts):
 let out = conts
 for entry, body in conts.functions():
 let types = infer_types(conts, entry,
 body)
 for label in body:
 match conts[label]:
 KExpr vars k (Primcall 'add1 (a)):
 if can_unbox?(label, k, a,
 types, conts):
 out = unbox(label, vars, k, a,
 out)
 _: pass
 return out

function can_unbox?(label, k, arg,
 types, conts):
 match conts[k]:
 KExpr (result) _ _:
 let rtype, rmin, rmax =
 lookup_post_type(label, result)
 let atype, amin, amax =
 lookup_pre_type(label, a)
 return unboxable?(rtype, rmin, rmax)
 and unboxable?(atype, amin, amax)

function unbox(label, vars, k, arg, conts):
 let uarg, res = fresh_vars(conts, 2)
 let kbox, kop = fresh_labels(conts, 2)

 conts = conts.replace(label,
 KEntry vars kop (Primcall 'unbox (a)))

 conts = conts.add(kop,
 KEntry (ua) kbox (Primcall 'uadd1 (ua)))

 return conts.add(kbox,
 KEntry (res) k (Primcall 'box (res)))

Salient points
To get name of result(s), have to look at
continuation

No easy way to get predecessors (without
building predecessors map)

No easy way to know if output var has
other definitions

❧

On the other hand... no easy way to write
local-only passes

Backwards flow
y = x & 0xffffffff

We only need low 32 bits from x; can allow x
to unbox...

...but can’t reach through from & to x.
Solution: solve a flow problem (bits needed
for each variable)

Also works globally!❧

Whither yon basic block?
Not necessary; get in the way sometimes

Need globally unique names for terms
anyway

Guile has terms that can bail out, unlike llvm;
have to do big flow graph anyway

Odd: almost never need dominators! Full
flow analysis instead.

Strengths
Simple – few moving parts

Immutability helps fit more of the problem
into your head

Interprocedural bindings pre-closure-
conversion easier to reason about than
locations in global heap

Good space complexity for complicated flow
analysis (type,range of all vars at all labels: n
log n)

Compared to SSA (1)
Just as rigid scheduling-wise (compare to
sea-of-nodes)

Flow analysis over cont graph has more
nodes than over basic block graph

Additional log n factor for most operations

Names as graph edges means lots of pointer
chasing

Compared to SSA (2)
Sometimes have to renumber graph if pass
wants specific ordering (usually topological)

Values that flow into phi vars have no names!

Lots of allocation (mitigate with zones?)

Always throwing away analysis

Summary
Better notation makes it easier to transform
programs

If SSA + basic block graph works for you,
great

If not, map to a notation that is more
tractable for you, transform there, and come
back

CPS name graph on persistent data
structures seems to work for Guile; perhaps
for you too?

Summary
Happy hacking!

wingolog.org

@andywingo

wingo@igalia.com

