
Production
Snabb
Simple, fast software networking
with Snabb

20 January 2017 – linux.conf.au

Andy Wingo wingo@igalia.com

@andywingo

hey
hacker

User-space networking is for us!

Snabb is a great way to do it!

Make a thing with Snabb!

(hi)story You are an ISP

The distant past: the year 2000

To set up: you lease DSL exchanges,
bandwidth, core routers

Mission accomplished!

(hi)story The distant past: the year 2005

You still pay for DSL, bandwidth,
routers

Also you have some boxes doing
VoIP (more cash)

(hi)story The distant past: the year 2010

You still pay for DSL, bandwidth,
routers, VoIP

OMG TV!!!

Also we are running out of IPv4!!!

Also the subscriber fee is still the
same!!!!!!!

(hi)story Trend: ISPs have to do more (VoIP,
TV, VOD, cloud, carrier NAT)

“Doing more”: more expensive
boxes in the rack ($70k/port?)

Same story with many other users

Isn’t there a better way?

material
conditions

In the meantime, commodity
hardware caught up

Xeon dual-socket, >12 core/
socket

❧

Many 10Gbps PCIe network cards
(NICs)

❧

100-200 Gbps/server

10-15 million packets per second
(MPPS) per core+NIC pair

70 ns/packet

Let’s do it!

alternate
(hi)story

The teleology of open source: “one
day this will all run Linux”

Conventional wisdom: if I walk the
racks of a big ISP, it’s probably all
Linux

linux? The teleology of open source: “one
day this will all run Linux”

Conventional wisdom: if I walk the
racks of a big ISP, it’s probably all
Linux

Q: The hardware is ready for 10
MPPS on a core. Is Linux?

not
linux

The teleology of open source: “one
day this will all run Linux”

Conventional wisdom: if I walk the
racks of a big ISP, it’s probably all
Linux

Q: The hardware is ready for 10
MPPS on a core. Is Linux?

A: Nope

why
not
linux

Heavyweight networking stack

System/user barrier splits your
single network function into two
programs

Associated communication costs

user-
space
networking

Cut Linux-the-kernel out of the
picture; bring up card from user
space

tell Linux to forget about this PCI
device

❧

mmap device’s PCI registers into
address space

❧

poke registers as needed❧

set up a ring buffer for receive/
transmit

❧

profit!❧

(hi)story
time

The distant past: the year 2017

Multiple open source user-space
networking projects having success

Prominent ones: Snabb (2012), DPDK
(2012), VPP/fd.io (2016)

Deutsche Telekom’s TeraStream:
Vendors provide network functions
as software, not physical machines

How do software network functions
work?

aside Snabb aims to be rewritable software

The hard part: searching program-
space for elegant hacks

“Is that all? I could rewrite that in a
weekend.”

nutshell A snabb program consists of a graph
of apps
Apps are connected by directional
links
A snabb program processes packets
in units of breaths

local Intel82599 =
 require("apps.intel.intel_app").Intel82599
local PcapFilter =
 require("apps.packet_filter.pcap_filter").PcapFilter

local c = config.new()
config.app(c, "nic", Intel82599, {pciaddr="82:00.0"})
config.app(c, "filter", PcapFilter, {filter="tcp port 80"})

config.link(c, "nic.tx -> filter.input")
config.link(c, "filter.output -> nic.rx")

engine.configure(c)

while true do engine.breathe() end

breaths Each breath has two phases:

inhale a batch of packets into the
network

❧

process those packets❧

To inhale, run pull functions on
apps that have them

To process, run push functions on
apps that have them

function Intel82599:pull ()
 for i = 1, engine.pull_npackets do
 if not self.dev:can_receive() then
 break
 end
 local pkt = self.dev:receive()
 link.transmit(self.output.tx, pkt)
 end
end

function PcapFilter:push ()
 while not link.empty(self.input.rx) do
 local p = link.receive(self.input.rx)
 if self.accept_fn(p.data, p.length) then
 link.transmit(self.output.tx, p)
 else
 packet.free(p)
 end
 end
end

packets struct packet {
 uint16_t length;
 unsigned char data[10*1024];
};

links struct link {
 struct packet *packets[1024];
 // the next element to be read
 int read;
 // the next element to be written
 int write;
};
// (Some statistics counters elided)

voilà At this point, you can rewrite Snabb

(Please do!)

But you might want to use it as-is...

tao Snabby design principles

Simple > Complex❧

Small > Large❧

Commodity > Proprietary❧

simple Compose network functions from
simple parts

intel10g | reassemble | filter |
fragment | intel10g

Apps independently developed

Linked together at run-time

Communicating over simple
interfaces (packets and links)

small Early code budget: 10000 lines

Build in a minute

Constraints driving creativity

Secret weapon: Lua via LuaJIT

High performance with minimal fuss

small Minimize dependencies

1 minute make budget includes Snabb
and all deps (luajit, pflua, ljsyscall,
dynasm)

Deliverable is single binary
./snabb --help
./snabb top
./snabb lwaftr run ...

small Writing our own drivers, in Lua

User-space networking

The data plane is our domain, not
the kernel’s

❧

Not DPDK’s either!❧

Fits in 10000-line budget❧

commodity What’s special about a Snabb
network function?

Not the platform (assume recent
Xeon)

Not the NIC (just need a driver to
inhale some packets)

Not Snabb itself (it’s Apache 2.0)

commodity Open data sheets

Intel 82599 10Gb

Mellanox ConnectX-4 (10, 25, 40,
100Gb)

Also Linux tap interfaces, virtio host
and guest

commodity Prefer CPU over NIC where possible

Commoditize NICs – no offload

Double down on 64-bit x86 servers

status Going on 5 years old

27 patch authors last year, 1400 non-
merge commits

Deployed in a dozen sites or so

Biggest programs: NFV virtual
switch, lwAFTR IPv6 transition core
router, SWITCH.ch VPN

New in 2016: multi-process, guest
support, 100G, control plane
integration

production Igalia developed “lwAFTR”
(lightweight address family
translation router)

Central router component of
“lightweight 4-over-6” deployment

lw4o6: IPv4-as-a-service over pure
IPv6 network

Think of it like a big carrier-grade
NAT

20Gbps, 4MPPS per core

challenges (1) Make it fast

(2) Make it not lose any packets

(3) Make it integrate

(4) Make it scale up and out

fast LuaJIT does most of the work

App graph plays to LuaJIT’s
strengths: lots of little loops

Loop-invariant code motion boils
away Lua dynamism

❧

Trace compilation punches
through procedural and data
abstractions

❧

Scalar replacement eliminates all
intermediate allocations

❧

fast Speed tips could fill a talk

Prefer FFI data structures (Lua
arrays can be fine too)

Avoid data dependency chains

4MPPS: 250 ns/packet

One memory reference: 80ns

Example: hash table lookups

lossless Max average latency for 100 packets
at 4MPPS: 25 us

Max latency (512-packet receive ring
buffer): 128 us

Avoid allocation

Avoid syscalls

Avoid preemption – reserved CPU
cores, no hyperthreads

Avoid faults – NUMA / TLB /
hugepages

Lots of tuning

integrate Operators have monitoring and
control infrastructure – command
line necessary but not sufficient

Snabb now does enough YANG to
integrate with an external NETCONF
agents

Runtime configuration and state
query, update

Avoid packet loss via multi-process
protocol

scale 2017 is the year of 100G in
production Snabb; multiple
coordinated data-plane processes

Also horizontal scaling via BGP/
ECMP: terabit lw4o6 deployments

Work in progress!

more Pflua: tcpdump / BPF compiler (now
with native codegen!)

NFV: fast virtual switch

Perf tuning: “x-ray diffraction” of
internal CPU structure via PMU
registers and timelines

DynASM: generating machine code
at run-time optimized for particular
data structures

Automated benchmarking via Nix,
Hydra, and RMarkdown!

[Your cool hack here!]

thanks! Make a thing with Snabb!
git clone https://github.com/SnabbCo/snabb
cd snabb
make

wingo@igalia.com

@andywingo

oh no here comes the hidden track!

Storytime! Modern x86: who’s winning?

Clock speed same since years ago

Main memory just as far away

HPC
people
are
winning

“We need to do work on data... but
there’s just so much of it and it’s
really far away.”

Three primary improvements:

CPU can work on more data per
cycle, once data in registers

❧

CPU can load more data per
cycle, once it’s in cache

❧

CPU can make more parallel
fetches to L3 and RAM at once

❧

Networking
folks
can
win
too

Instead of chasing zero-copy, tying
yourself to ever-more-proprietary
features of your NIC, just take the hit
once: DDIO into L3.

Copy if you need to – copies with L3
not expensive.

Software will eat the world!

Networking
folks
can
win
too

Once in L3, you have:

wide loads and stores via AVX2
and soon AVX-512 (64 bytes!)

❧

pretty good instruction-level
parallelism: up to 16 concurrent
L2 misses per core on haswell

❧

wide SIMD: checksum in
software!

❧

software, not firmware❧

