
DIY Internet with
MinimaLT
Low-latency secure networking

JSConf.EU 2013

Andy Wingo

wingo@igalia.com

Compiler hacker at Igalia

Recently: ES6 generators in V8, SpiderMonkey
(sponsored by Bloomberg)

Not a cryptographer

This talk is for folks that deploy both endpoints,
for cryptonerds, and for early-stage tinkerers

You are here

Context: Militarization of daily life

Generals peeping on your web searches

Read the wrong things and they send the SWAT
team

what’s he building in there?

what’s he building in there?

He has subscriptions to those RSS feeds

And he’s been tweeting about MinimaLT

We’re in his router, and his mobile phone

You won’t believe what we got from the drone

What’s he building in there?

What the hell is he building in there?

We have a right to know

Solution?

Smash the state!

Meanwhile, let’s not make it easy for the NSA

HTTPS vs...

Attack vectors:

Cryptanalysis (RC4)❧

MITM via rogue certificates (DigiNotar &c)❧

Use JavaScript! CRIME, BEAST, ...❧

Backdoors in TLS implementations
(Windows?)

❧

HTTPS vs...

Attack vectors:

Cryptanalysis (RC4)❧

MITM via rogue certificates (DigiNotar &c)❧

Use JavaScript! CRIME, BEAST, ...❧

Backdoors in TLS implementations
(Windows?)

❧

HTTP❧

HTTPS vs HTTP

“Cryptography that is not actually used can be
viewed as the ultimate disaster” – DJB

competitions.cr.yp.to/disasters.html

How many of you...

HTTPS vs HTTP

“Cryptography that is not actually used can be
viewed as the ultimate disaster” – DJB

competitions.cr.yp.to/disasters.html

How many of you...

use EFF’s “HTTPS everywhere” extension?❧

HTTPS vs HTTP

“Cryptography that is not actually used can be
viewed as the ultimate disaster” – DJB

competitions.cr.yp.to/disasters.html

How many of you...

use EFF’s “HTTPS everywhere” extension?❧

never use plain HTTP with Google?❧

HTTPS vs HTTP

“Cryptography that is not actually used can be
viewed as the ultimate disaster” – DJB

competitions.cr.yp.to/disasters.html

How many of you...

use EFF’s “HTTPS everywhere” extension?❧

never use plain HTTP with Google?❧

There is a reason for this

Anatomy of a GET

000.00 → www.gnu.org TCP SYN

Visiting http://www.gnu.org/ over French
wired ADSL.

Anatomy of a GET

000.00 → www.gnu.org TCP SYN
130.50 ← www.gnu.org TCP SYN/ACK

130 ms RTT, ~65ms latency.

Remote server hosted in Boston, ~4000 miles
away.

4000 miles is 22 light-milliseconds.

Anatomy of a GET

000.00 → www.gnu.org TCP SYN
130.50 ← www.gnu.org TCP SYN/ACK
130.78 → www.gnu.org HTTP GET /

The GET is delayed by 130 ms.

Anatomy of a GET

000.00 → www.gnu.org TCP SYN
130.50 ← www.gnu.org TCP SYN/ACK
130.78 → www.gnu.org HTTP GET /
278.00 ← www.gnu.org TCP [begin]

Begin receiving response. Early parsing.

Anatomy of a GET

000.00 → www.gnu.org TCP SYN
130.50 ← www.gnu.org TCP SYN/ACK
130.78 → www.gnu.org HTTP GET /
278.00 ← www.gnu.org TCP [begin]
282.00 → www.gnu.org TCP SYN x 3

Kick off more connections for parallel fetch.

Anatomy of a GET

000.00 → www.gnu.org TCP SYN
130.50 ← www.gnu.org TCP SYN/ACK
130.78 → www.gnu.org HTTP GET /
278.00 ← www.gnu.org TCP [begin]
282.00 → www.gnu.org TCP SYN x 3
410.71 ← www.gnu.org HTTP 200 OK

Total: 7108 bytes over 411 milliseconds.

Anatomy of a GET

000.00 → www.gnu.org TCP SYN
130.50 ← www.gnu.org TCP SYN/ACK
130.78 → www.gnu.org HTTP GET /
278.00 ← www.gnu.org TCP [begin]
282.00 → www.gnu.org TCP SYN x 3
410.71 ← www.gnu.org HTTP 200 OK
414.85 → www.gnu.org TCP SYN/ACK x 3

Initial round-trip kills parallel fetch :-(

HTTPS sadness

000.00 → www.gnu.org TCP SYN

HTTPS sadness

000.00 → www.gnu.org TCP SYN
129.91 ← www.gnu.org TCP SYN/ACK
130.46 → www.gnu.org TLS Client Hello

HTTPS sadness

000.00 → www.gnu.org TCP SYN
129.91 ← www.gnu.org TCP SYN/ACK
130.46 → www.gnu.org TLS Client Hello
266.13 ← www.gnu.org TLS Server Hello
267.08 ← www.gnu.org TLS Certificate
267.73 → www.gnu.org TLS Key Exchange

HTTPS sadness

000.00 → www.gnu.org TCP SYN
129.91 ← www.gnu.org TCP SYN/ACK
130.46 → www.gnu.org TLS Client Hello
266.13 ← www.gnu.org TLS Server Hello
267.08 ← www.gnu.org TLS Certificate
267.73 → www.gnu.org TLS Key Exchange
449.06 ← www.gnu.org TCP ACK (???)
449.10 → www.gnu.org TLS Change Cipher

HTTPS sadness

000.00 → www.gnu.org TCP SYN
129.91 ← www.gnu.org TCP SYN/ACK
130.46 → www.gnu.org TLS Client Hello
266.13 ← www.gnu.org TLS Server Hello
267.08 ← www.gnu.org TLS Certificate
267.73 → www.gnu.org TLS Key Exchange
449.06 ← www.gnu.org TCP ACK (???)
449.10 → www.gnu.org TLS Change Cipher
580.28 ← www.gnu.org TLS Change Cipher
583.72 → www.gnu.org HTTPS GET /

HTTPS sadness

000.00 → www.gnu.org TCP SYN
129.91 ← www.gnu.org TCP SYN/ACK
130.46 → www.gnu.org TLS Client Hello
266.13 ← www.gnu.org TLS Server Hello
267.08 ← www.gnu.org TLS Certificate
267.73 → www.gnu.org TLS Key Exchange
449.06 ← www.gnu.org TCP ACK (???)
449.10 → www.gnu.org TLS Change Cipher
580.28 ← www.gnu.org TLS Change Cipher
583.72 → www.gnu.org HTTPS GET /
764.97 ← www.gnu.org HTTPS 200 OK

... and then the CSS, the JS, ...

MinimaLT, a low-latency
networking protocol

“properly implemented, strong crypto”

... that connects faster than TCP

SYN/ACK – Just say no!

Properly implemented, strong
crypto

Uses high-level NaCl library from @hashbreaker
and @hyperelliptic

Avoids many HTTPS/TLS pitfalls

Well-chosen cyphers❧

Timing-independent implementation❧

No plaintext (HTTP) mode❧

MinimaLT adds forward secrecy

Minimal latency

1 round trip if you need “DNS” lookup

0 otherwise

Persistent tunnels

Tunnels can migrate over IP changes – invisible
to applications

A protocol for today’s internet

UDP-based

Reliable: replaces TCP + TLS

Denial-of-Service (DoS) resistance

Low overhead, scales to tens of Gb/s

Tunnels and connections

Tunnelsmultiplex connections

Connection 0 is the control connection

flow control❧

connection creation❧

authentication (client certs)❧

Multiple connections can proceed concurrently

QUIC more advanced here in some ways

Wire protocol

 +----------------------+
 c | Ethernet, IP, UDP | 42 bytes
 l |----------------------|
 e | Tunnel ID, Nonce | 16 bytes
 a |----------------------|
 r | Ephemeral public key | 32 bytes (first)
 |======================|
 c | Checksum | 16 bytes
 y |----------------------|
 p | Seq, Ack | 8 bytes
 h |----------------------|
 e | Payload |
 r | ... |

Crypto

NaCl “box”:
 +------------+ C'→S'
 | Cyphertext | n
 +------------+

Tunnel ID (TID): a random 64-bit number,
provided by client when creating the tunnel

After first packet, TID looks up C'→S': the
shared secret

Protocol to change TID and evolve shared secret
for forward security

How to get server’s public key?

TLS:

Client knows address of DNS provider❧

DNS gives server address (maybe)❧

Client connects to server, server provides
certificate

❧

Client verifies cert. using public key
infrastructure (PKI)

❧

How to get server’s public key?

MinimaLT:

Client knows address, long-term key of
Directory Service

❧

Server registers address, port, long-term
public key and ephemeral public key with
DS

❧

Client asks DS for server info, trusts DS❧

Servers could register info in DNS records with
suitably low TTL (TBD)

Directory server protocol

At first lookup of any name, or at boot:

1 round-trip to fetch DS’s ephemeral key❧

To look up a name:

1 round-trip using fresh ephemeral client
key, DS’s ephemeral key

❧

Authenticated and encrypted

Performance

The “expensive” part: establishing the shared
secret via Curve25519, which happens when
tunnels are created.

8000 connections/s/core on modern x86❧

~750 connections/s/core on modern ARM
(estimate)

❧

Afterwards, MinimaLT can saturate Gb/s links

Denial-of-Service

Why is MinimaLT able to avoid 3-way
handshake?

A server can slow down clients arbitrarily
using puzzles

❧

Clients may have to “mine for bitcoins”❧

Puzzles can be sent at any point (tunnel GC)❧

Pre-RT responses should be smaller than
requests (hello DNSSEC)

❧

Amplification vs latency?

In general, response can be larger than the
request (e.g. HTTP GET)

Does the client IP (spoofable cleartext)
correspond to the client request (authenticated,
tamper-proof)?

One round trip seems needed in general :-(

Mitigated by long-term tunnels, multiplexed
connections

No worse than TCP

Faster than TCP

0RT connects faster than TCP at any latency
above 0.5 ms (150 km)

Always faster than OpenSSL

At 64ms latency: 130ms full connection,
request, response vs 516ms for OpenSSL

Compare to 278ms for HTTP

Tor-friendly

Project status

University of Illinois at Chicago research project
(Jon Solworth)

Very 2013

Ethos, new Xen-based OS

Security-focused❧

Typed filesystem, typed IPC❧

Written in C and Go❧

http://ethos-os.org/

W. Michael Petullo doing MinimaLT

MinimaLT: remote IPC for
Ethos

res := <-Ipc("example.com", "http",
 "GET", "/")

res := <-Ipc("example.com", "foo",
 &Foo{bar:42, baz:"qux"})

And POSIX?

Ongoing work to make a shared library; expect
it out shortly
minimalt_connection*
minimalt_connect_and_write
 (char *host, char *service,
 uint8_t *data, size_t count);

Probably not RPC-based – type tools are a mess

And JavaScript?? :)

Upcoming: Libuv integration, and from there to
Node

MinimaLT needs an event loop running,
somehow

❧

Pure-JS reliability layer?

Experiments in congestion control❧

On the front lines

Bandwidth goes up, but latency stays the same.

There is demand for privacy at low latency:
demand for a new protocol.

Go forth and hack!

MinimaLT @ ACM CCS 2013 – Here (Berlin) in
Nov.

SYN/ACK – Just say no!

@andywingo for slides, upcoming lib release

