
WARNING: (srfi srfi-35): ‘every’ imported from both (oop goops util) and (srfi srfi-1) WARNING: (srfi
srfi-35): ‘any’ imported from both (oop goops util) and (srfi srfi-1) WARNING: (g-wrap util): imported
module (srfi srfi-34) overrides core binding ‘raise’ WARNING: (g-wrap): imported module (srfi srfi-34)
overrides core binding ‘raise’ WARNING: (g-wrap rti): imported module (srfi srfi-34) overrides core binding
‘raise’ WARNING: (g-wrap c-types): imported module (srfi srfi-34) overrides core binding ‘raise’ WARNING:
(gnome gw support g-wrap): ‘declarations-cg’ imported from both (g-wrap c-codegen) and (g-wrap scm-
codegen) WARNING: (gnome gw support defs): imported module (srfi srfi-34) overrides core binding ‘raise’
WARNING: (gnome gw support gtk-doc): imported module (sxml xpath) overrides core binding ‘filter’

Guile-GNOME: GObject
version 2.15.93, updated 25 August 2007

Andy Wingo (wingo at pobox.com)
Martin Baulig (baulig at suse.de)

mailto:wingo at pobox.com
mailto:baulig at suse.de

This manual is for Guile-GNOME: GObject (version 2.15.93, updated 25 August 2007)
Copyright 2003,2004,2005,2006,2007 Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License, Version 2 or any later version
published by the Free Software Foundation.

i

Short Contents

1 (gnome gobject gtype) . 1

2 (gnome gobject gvalue) . 4

3 (gnome gobject gparameter) . 8

4 (gnome gobject gclosure) . 12

5 (gnome gobject gsignal) . 13

6 (gnome gobject gobject) . 16

7 (gnome gobject generics) . 19

8 (gnome gobject utils) . 23

9 (gnome gw support gobject) . 24

10 (gnome gw support defs) . 26

11 (gnome gw support gtk-doc) . 27

12 (gnome gw support modules) . 28

Concept Index . 29

Function Index . 30

Chapter 1: (gnome gobject gtype) 1

1 (gnome gobject gtype)

1.1 Overview

Base support for the GLib type system.
The GLib runtime type system is broken into a number of modules, of which GType

is the base. A <gtype> is a named type that has a number of properties. Some types
are fundamental and cannot be subclassed, such as integers. Others can form the root of
complicated object hierarchies, such as <gobject>.

One can obtain the <gtype> object for a type if you know its name. For example,
(gtype-from-name "guint64") ⇒ #<gtype guint64>

<gtype> objects are low-level constructs. In Scheme, it is more usual to work with
GOOPS type objects. Each <gtype> corresponds to one GOOPS object, which may be
obtained programmatically using gtype->class.

A more detailed reference on the GLib type system may be had at
http://library.gnome.org/devel/gobject/stable/.

1.2 Usage

[Primitive]gtype? type
Returns #t if type is a GType and #f if not.

[Primitive]gtype-is-a? type is a type
Returns #t if type is a subtype of is a type.

[Primitive]gtype-basic? type
Returns #t if type is a basic type. Basic types have only one possible representation
in Scheme. Unless the user means to deal in GValues, values of basic types should be
manipulated as Scheme values.

[Primitive]gtype-classed? type
Returns #t if type is a classed type.

[Primitive]gtype-instantiatable? type
Returns #t if type is an instantiatable type.

[Primitive]gtype-fundamental? type
Returns #t if type is a fundamental type and #f if not. This is the same as (eq?
type (gtype->fundamental type)), but slightly faster.

[Primitive]gtype->fundamental type
Returns the fundamental type of type (possibly type itself).

http://library.gnome.org/devel/gobject/stable/

Chapter 1: (gnome gobject gtype) 2

[Primitive]gtype-parent type
Returns the parent type of type (possibly type itself).

[Primitive]gtype-children type
Returns the <gtype>’s of type’s direct children, as a list.

[Primitive]gtype-interfaces type
Returns the set of <gtype>’s that type implements, as a list.

[Primitive]gtype-name type
Returns the name of type.

[Primitive]gtype-from-name name
Returns the type named name, or #f if none exists.

[Primitive]gtype-from-instance instance
Returns the type of instance, which should be a primitive <%gtype-instance>.

[Primitive]%gtype-instance-primitive-destroy! instance
Release all references that the Scheme wrapper instance has on the underlying C
value, and release pointers associated with the C value that point back to Scheme.
Normally not necessary. Used by the implementations of some instantiatable types
that have destroy methods, notably <gtk-object>.

[Primitive]gtype-instance-primitive->type instance
Retrieve the <gtype> object associated with the primitive <%gtype-instance> value,
instance.

[Primitive]especify-metaclass! class metaclass
A terrible hack that takes a class class and sets its metaclass, in-place, to metaclass.
metaclass must be a subclass of class’ existing metaclass.
This method is useful if you want to define a method that on a particular <gtype-
class>, such as make-instance. However, it would be cleaner to devise a way of
making these “class methods” without molesting GOOPS in this way.

[Class]<gtype-class>
The metaclass of all GType classes. Ensures that GType classes have gtype and
gtype-class slots, which point to the primitive <gtype> and <%gtype-class> ob-
jects that wrap the C values.

[Class]<gtype-instance-class>
The metaclass of all instantiatable GType classes.

[Class]<gtype-instance>
The root class of all instantiatable GType classes. Adds a slot, gtype-instance, to
instances. This slot will point to the primitive <%gtype-instance> object that wraps
the C value.

Chapter 1: (gnome gobject gtype) 3

[Function]gtype->class type
If there is already a GOOPS class associated with the GType type, return this class.
Otherwise, create a new GOOPS class and bind it to this type. The created class is
an immortal, persistent object which is bound in some magic way to its GType.

[Function]gtype-class->type class
Returns the <gtype> associated with a <gtype-class>.

[Primitive]%gtype-lookup-class type
Returns the <gtype-class> registered for type, or #f if none has been registered.

[Primitive]%gtype-bind-to-class class type
A low-level procedure to bind the newly-created <gtype-class> class to type. Users
should not need to call this function.

[Generic]gtype-instance:write
Generic function, defined so we can define write functions for instances of <gtype-
class> in Scheme. A bit of a hack.

[Method]gtype-instance:write (class <gtype-class>) (obj
<%gtype-instance>) (file <top>)

[Function]gruntime-error format-string . args
Signal a runtime error. The error will be thrown to the key gruntime-error.

[Function]class-name->gtype-name class-name
Convert the name of a class into a suitable name for a GType. For example:

(class-name->gtype-name ’<foo-bar>) ⇒ "FooBar"

[Variable]gtype:genum

[Variable]gtype:gflags

[Variable]gtype:ginterface

[Variable]gtype:gobject

[Variable]gtype:gparam

[Variable]gtype:void

Chapter 2: (gnome gobject gvalue) 4

2 (gnome gobject gvalue)

2.1 Overview

GLib supports generic typed values via its GValue module. These values are wrapped in
Scheme as instances of <gvalue-class> classes, such as <gint>, <gfloat>, etc.

In most cases, use of <gvalue> are transparent to the Scheme user. Values which can be
represented directly as Scheme values are normally given to the user in their Scheme form,
e.g. #\a instead of #<gvalue <gchar> 3020c708 a>. However, when dealing with low-level
routines it is sometimes necessary to have values in <gvalue> form. The conversion between
the two is performed via the scm->gvalue and gvalue->scm functions.

The other set of useful procedures exported by this module are those dealing with enu-
merated values and flags. These objects are normally represented on the C side with
integers, but they have symbolic representations registered in the GLib type system.

On the Scheme side, enumerated and flags values are canonically expressed as <gvalue>
objects. They can be converted to integers or symbols using the conversion procedures
exported by this module. It is conventional for Scheme procedures that take enumerated
values to accept any form for the values, which can be canonicalized using (make <your-
enum-type> #:value value), where value can be an integer, a symbol (or symbol list in
the case of flags), or the string “nickname” (or string list) of the enumerated/flags value.

2.2 Usage

[Primitive]gvalue? value
Returns #t if value is a <gvalue>, #f otherwise.

[Primitive]gvalue->type value
Returns the <gtype> of the value held by value.

[Class]<gboolean>
A <gvalue> class for boolean values.

[Class]<gchar>
A <gvalue> class for signed 8-bit values.

[Class]<guchar>
A <gvalue> class for unsigned 8-bit values.

[Class]<gint>
A <gvalue> class for signed 32-bit values.

[Class]<guint>
A <gvalue> class for unsigned 32-bit values.

[Class]<glong>
A <gvalue> class for signed “long” (32- or 64-bit) values.

Chapter 2: (gnome gobject gvalue) 5

[Class]<gulong>
A <gvalue> class for unsigned “long” (32- or 64-bit) values.

[Class]<gint64>
A <gvalue> class for signed 64-bit values.

[Class]<guint64>
A <gvalue> class for unsigned 64-bit values.

[Class]<gfloat>
A <gvalue> class for 32-bit floating-point values.

[Class]<gdouble>
A <gvalue> class for 64-bit floating-point values.

[Class]<gchararray>
A <gvalue> class for arrays of 8-bit values (C strings).

[Class]<gboxed>
A <gvalue> class for “boxed” types, a way of wrapping generic C structures. Use
gvalue->type on an instance of this class to determine what type it holds.

[Class]<gboxed-scm>
A <gboxed> class for holding arbitrary Scheme objects.

[Class]<gvalue-array>
A <gvalue> class for arrays of <gvalue>.

[Class]<genum>
A <gvalue> base class for enumerated values. Users may define new enumerated value
types via subclssing from <genum>, passing #:vtable table as an initarg, where table
should be in a format suitable for passing to genum-register-static.

[Class]<gflags>
A <gvalue> base class for flag values. Users may define new flag value types via
subclssing from <gflags>, passing #:vtable table as an initarg, where table should
be in a format suitable for passing to gflags-register-static.

[Primitive]genum-register-static name vtable
Creates and registers a new enumerated type with name name with the C runtime.
There must be no type with name name when this function is called.
The new type can be accessed from C either by passing the returned <gtype> object
back to a C function or by using g-type-from-name.
vtable is a vector describing the new enum type. Each vector element describes one
enum element and must be a list of 3 elements: the element’s nick name as a symbol,
its name as a string, and its integer value.

(genum-register-static "Test"
#((foo "Foo" 1) (bar "Bar" 2) (baz "Long name of baz" 4)))

Chapter 2: (gnome gobject gvalue) 6

[Primitive]gflags-register-static name vtable
Creates and registers a new flags <gtype> with name var{name} with the C runtime.
See genum-register-static for details.

[Function]genum-class->value-table class
Return the vtable of possible values for class. The same as genum-type-get-values,
but operates on classes.

[Function]gflags-class->value-table class
Return the vtable of possible values for class. The same as gflags-type-get-values,
but operates on classes.

[Primitive]genum-type-get-values type
Return a vtable of the values supported by the enumerated <gtype> type. The return
value will be in the format described in genum-register-static.

[Primitive]gflags-type-get-values type
Return a vtable of the values supported by the flag <gtype> type. The return value
will be in the format described in gflags-register-static.

[Primitive]scm->gvalue type scm
Convert a Scheme value into a <gvalue> of type type. If the conversion is not possible,
raise a gruntime-error.

[Primitive]gvalue->scm value
Convert a <gvalue> into it normal scheme representation, for example unboxing
characters into Scheme characters. Note that the Scheme form for some values is the
<gvalue> form, for example with boxed or enumerated values.

[Function]genum->symbol obj
Convert the enumerated value obj from a <gvalue> to its symbol representation (its
“nickname”).

[Function]genum->name obj
Convert the enumerated value obj from a <gvalue> to its representation as a string
(its “name”).

[Function]genum->value obj
Convert the enumerated value obj from a <gvalue> to its representation as an integer.

[Function]gflags->symbol-list obj
Convert the flags value obj from a <gvalue> to a list of the symbols that it represents.

[Function]gflags->name-list obj
Convert the flags value obj from a <gvalue> to a list of strings, the names of the
values it represents.

Chapter 2: (gnome gobject gvalue) 7

[Function]gflags->value-list obj
Convert the flags value obj from a <gvalue> to a list of integers, which when logand’d
together yield the flags’ value.

[Variable]gtype:gboolean

[Variable]gtype:gboxed

[Variable]gtype:gboxed-scm

[Variable]gtype:gchar

[Variable]gtype:gchararray

[Variable]gtype:gdouble

[Variable]gtype:gfloat

[Variable]gtype:gint

[Variable]gtype:gint64

[Variable]gtype:glong

[Variable]gtype:gpointer

[Variable]gtype:guchar

[Variable]gtype:guint

[Variable]gtype:guint64

[Variable]gtype:gulong

[Variable]gtype:gvalue-array

Chapter 3: (gnome gobject gparameter) 8

3 (gnome gobject gparameter)

3.1 Overview

Parameters are constraints for values, both in type and in range. This module wraps the
parameters code of the GLib type system, defining C classes such that parameters may be
manipulated and created from Scheme.

As a technical detail, the C structure GParamSpec is wrapped at two levels. One is a
mapping of the C structure to a Guile structure. The other is a GOOPS representation. The
low level is called gparam-struct, and the high level is called <gparam>. gparam-struct is
a generic container of any type. <gparam> has subclasses for the various kinds of parameter
types: <gparam-int>, <gparam-object>, etc.

3.2 Usage

[Class]<gparam>
The base class for GLib parameter objects.

[Class]<gparam-char>
Parameter for <gchar> values. 3 arguments: minimum, maximum, and default values.

[Class]<gparam-uchar>
Parameter for <guchar> values. 3 arguments: minimum, maximum, and default
values.

[Class]<gparam-boolean>
Parameter for <gboolean> values. 1 argument: default value.

[Class]<gparam-int>
Parameter for <gint> values. 3 arguments: minimum, maximum, and default values.

[Class]<gparam-uint>
Parameter for <guint> values. 3 arguments: minimum, maximum, and default values.

[Class]<gparam-long>
Parameter for <glong> values. 3 arguments: minimum, maximum, and default values.

[Class]<gparam-ulong>
Parameter for <gulong> values. 3 arguments: minimum, maximum, and default
values.

[Class]<gparam-int64>
Parameter for <gint64> values. 3 arguments: minimum, maximum, and default
values.

Chapter 3: (gnome gobject gparameter) 9

[Class]<gparam-uint64>
Parameter for <guint64> values. 3 arguments: minimum, maximum, and default
values.

[Class]<gparam-float>
Parameter for <gfloat> values. 3 arguments: minimum, maximum, and default
values.

[Class]<gparam-double>
Parameter for <gdouble> values. 3 arguments: minimum, maximum, and default
values.

[Class]<gparam-pointer>
Parameter for <gpointer> values. No arguments.

[Class]<gparam-string>
Parameter for <gchararray> values. 1 argument: the default value, which may be
#f.

[Class]<gparam-object>
Parameter for <gobject> values. 1 argument: the <gtype> of the value.

[Class]<gparam-boxed>
Parameter for <gboxed> values. 1 argument: the <gtype> of the value.

[Class]<gparam-enum>
Parameter for <genum> values. 2 arguments: the <gtype> of the value, and the default
value.

[Class]<gparam-flags>
Parameter for <gflags> values. 2 arguments: the <gtype> of the value, and the
default value.

[Class]<gparam-spec-flags>
A <gflags> type for the flags allowable on a <gparam>: read, write, construct,
construct-only, and lax-validation.

[Function]gparam-struct:name param-struct
Retrieve the name from a gparam-struct.

[Function]gparam-struct:nick param-struct
Retrieve the ‘nickname’ from a gparam-struct.

[Function]gparam-struct:blurb param-struct
Retrieve the ‘blurb’, a short descriptive string, from a gparam-struct.

Chapter 3: (gnome gobject gparameter) 10

[Function]gparam-struct:flags param-struct
Retrieve the flags from a gparam-struct.

[Function]gparam-struct:param-type param-struct
Retrieve the GParam type from a gparam-struct, for example gtype:gparam-
uint64.

[Function]gparam-struct:value-type param-struct
Retrieve the value type from a gparam-struct, for example gtype:guint64.

[Function]gparam-struct:owner-type param-struct
Retrieve the ‘owner type’ from a gparam-struct. Appears to be stored into GLib
param specs, but never used.

[Function]gparam-struct:args param-struct
Retrieve the arguments from a gparam-struct, as a list. The length and composition
of the arguments depends on the parameter type.

[Primitive]gparam->param-struct param
Retrieve the primitive gparam-struct for the GOOPS parameter object, param.

[Primitive]gparam->value-type param
Retrieve the value type of the <gparam> object param.

[Variable]gparameter:uint-max

[Variable]gparameter:int-min

[Variable]gparameter:int-max

[Variable]gparameter:ulong-max

[Variable]gparameter:long-min

[Variable]gparameter:long-max

[Variable]gparameter:uint64-max

[Variable]gparameter:int64-min

[Variable]gparameter:int64-max

[Variable]gparameter:float-max

[Variable]gparameter:float-min

[Variable]gparameter:double-max

[Variable]gparameter:double-min

[Variable]gparameter:byte-order

[Variable]gtype:gparam-boolean

[Variable]gtype:gparam-boxed

Chapter 3: (gnome gobject gparameter) 11

[Variable]gtype:gparam-char

[Variable]gtype:gparam-double

[Variable]gtype:gparam-enum

[Variable]gtype:gparam-flags

[Variable]gtype:gparam-float

[Variable]gtype:gparam-int

[Variable]gtype:gparam-int64

[Variable]gtype:gparam-long

[Variable]gtype:gparam-object

[Variable]gtype:gparam-pointer

[Variable]gtype:gparam-string

[Variable]gtype:gparam-uchar

[Variable]gtype:gparam-uint

[Variable]gtype:gparam-uint64

[Variable]gtype:gparam-ulong

Chapter 4: (gnome gobject gclosure) 12

4 (gnome gobject gclosure)

4.1 Overview

The GLib type system supports the creation and invocation of “closures”, objects which
can be invoked like procedures. Its infrastructure allows one to pass a Scheme function
to C, and have C call into Scheme, and vice versa. This module exports a GOOPS class
wrapping closures on the Scheme level, <gclosure>. <gclosure> holds a Scheme procedure,
the <gtype> of its return value, and a list of the <gtype>’s of its arguments. Closures can
be invoked with gclosure-invoke. For example:

(gclosure-invoke (make <gclosure>
#:return-type <gint>
#:param-types (list <gulong>)
#:func (lambda (x) (* x x)))

10)
⇒ 100

4.2 Usage

[Class]<gclosure>
The Scheme representation of a GLib closure: a typed procedure object that can be
passed to other languages.

[Function]gclosure-invoke closure . args
Invoke a closure. The arguments args will be converted to <gvalue> objects of the
appropriate type, and the return value will be run through gvalue->scm. For all
practical purposes, this function is like apply.

[Variable]gtype:gclosure

Chapter 5: (gnome gobject gsignal) 13

5 (gnome gobject gsignal)

5.1 Overview

GSignal is a mechanism by which code, normally written in C, may expose extension points
to which closures can be connected, much like Guile’s hooks. Instantiatable types can have
signals associated with them; for example, <gtk-widget> has an expose signal that will be
“fired” at certain well-documented points.

Signals are typed. They specify the types of their return value, and the types of their
arguments.

This module defines routines for instrospecting, emitting, connecting to, disconnecting
from, blocking, and unblocking signals. Additionally it defines routines to define new signal
types on instantiatable types.

5.2 Usage

[Variable]<gsignal>
The structure vtable for <gsignal> instances.

[Function]gsignal:id signal
Access the “id” of a <gsignal> structure, an integer.

[Function]gsignal:name signal
Access the name of a <gsignal> structure, a string.

[Function]gsignal:interface-type signal
Access the type to which a <gsignal> structure is associated, a <gtype>.

[Function]gsignal:return-type signal
Access the return type from a a <gsignal> structure, a <gtype>.

[Function]gsignal:param-types signal
Access the parameter types from a a <gsignal> structure, a list of <gtype>.

[Primitive]gtype-get-signals type
Returns a vector of signal names belonging to type and all parent types.

[Function]gtype-class-get-signals class
Returns a vector of signals belonging to class and all parent classes.

[Function]gtype-class-get-signal-names class
Returns a vector of signal names belonging to class and all parent classes.

[Function]gtype-instance-signal-emit object name . args
Emits signal name with arguments args on the <gtype-instance> object. name
should be a symbol.

Chapter 5: (gnome gobject gsignal) 14

[Function]gtype-instance-signal-connect-data object name func after
Connects func as handler for the <gtype-instance> object’s signal name.

name should be a symbol. after is boolean specifying whether the handler is run
before (#f) or after (#t) the signal’s default handler.

Returns an integer number which can be used as arugment of gsignal-handler-
block, gsignal-handler-unblock, gsignal-handler-disconnect and gsignal-
handler-connected?.

[Function]gtype-instance-signal-connect object name func
Convenience function for calling gtype-instance-signal-connect-data with after
= #f.

[Function]gtype-instance-signal-connect-after object name func
Convenience function for calling gtype-instance-signal-connect-data with after
= #t.

[Function]gsignal-handler-block obj id
Block invocation of the signal handler identified by id from high-level GOOPS object
object.

[Function]gsignal-handler-unblock obj id
Unblock invocation of the signal handler identified by id from high-level GOOPS
object object.

[Function]gsignal-handler-disconnect obj id
Disconnect the signal handler identified by id from high-level GOOPS object object.

[Function]gsignal-handler-connected? obj id
Returns #t if the signal handler identified by id is connected on the high-level GOOPS
object object, or #f otherwise.

[Function]gtype-class-create-signal class name return-type param-types
Create a new signal associated with the <gtype-class> class.

name should be a symbol, the name of the signal. return-type should be either a
<gtype> or a <gtype-class> object. Similarly, param-types should be a list of either
<gtype> or <gtype-class> objects.

In a bit of an odd interface, this function will return a new generic function, which
will be run as the signal’s default handler, whose default method will silently return
an unspecified value. The user may define new methods on this generic to provide
alternative default handler implementations.

[Special Form]gtype-class-define-signal
A macro invoked as:

Chapter 5: (gnome gobject gsignal) 15

(gtype-class-define-signal class name return-type

. param-types)

All arguments will be passed to gtype-class-create-signal.
This form is a macro because it will actually take the generic returned from gtype-
class-create-signal and bind it to a name in the toplevel environment.
The name of the new generic function is the concatenation of the type name, a colon,
and the signal name.
For example:

(gtype-class-define-signal <foo> ’roswell #f)
(define-method (foo:roswell (obj <foo>))

unspecified)

(gtype-class-define-signal <foo> ’berlin <glong> <gint>)
(define-method (foo:berlin (obj <foo>) (x <number>))

85)

Chapter 6: (gnome gobject gobject) 16

6 (gnome gobject gobject)

6.1 Overview

GObject is what is commonly understood as the object system for GLib. This is not strictly
true. GObject is one implementation of an object system, built on the other modules:
GType, GValue, GParameter, GClosure, and GSignal.

Similarly, this Guile module provides integration with the GObject object system, built
on the Guile modules that support GType, GValue, GParameter, GClosure, and GSignal.

The main class exported by this module is <gobject>. <gobject> classes can be sub-
classed by the user, which will register new subtypes with the GType runtime type system.
<gobject> classes are are also created as needed when wrapping GObjects that come from
C, for example from a function’s return value.

Besides supporting derivation, and signals like other <gtype-instance> implementa-
tions, <gobject> has the concept of properties, which are <gvalue>’s associated with the
object. The values are constrained by <gparam>’s, which are associated with the object’s
class. This module exports the necessary routines to query, get, and set <gobject> prop-
erties.

In addition, this module defines the <ginterface> base class, whose subclasses may be
present as mixins of <gobject> classes. For example:

(use-modules (gnome gtk) (oop goops))
(class-direct-supers <gtk-widget>) ⇒

(#<<gobject-class> <atk-implementor-iface> 3033bad0>
#<<gobject-class> <gtk-object> 3034bc90>)

In this example, we see that <gtk-widget> has two superclasses, <gtk-object> and
<atk-implementor-iface>. The second is an interface implemented by the <gtk-widget>
class. See gtype-interfaces for more details.

6.2 Usage

[Class]<gobject>
The base class for GLib’s default object system.
<gobject>’s metaclass understands a new slot option, #:gparam, which will export
a slot as a <gobject> property. The default implementation will set and access the
value from the slot, but you can customize this by writing your own methods for
gobject:set-property and gobject:get-property.
In addition, the metaclass also understands #:gsignal arguments, which define sig-
nals on the class, and define the generics for the default signal handler. See gtype-
class-define-signal for more information.
For example:

;; deriving from <gobject>
(define-class <test> (<gobject>)
;; a normal object slot

Chapter 6: (gnome gobject gobject) 17

my-data

;; an object slot exported as a gobject property
(pub-data #:gparam (list <gparam-long> #:name ’test))

;; likewise, using non-default parameter settings
(foo-data #:gparam (list <gparam-long> #:name ’foo

#:minimum -3 #:maximum 1000
#:default-value 42))

;; a signal with no arguments and no return value
#:gsignal ’(frobate #f)

;; a signal with arguments and a return value
#:gsignal (list ’frobate <gboolean> <gint> <glong>))

;; deriving from <test> -- also inherits properties and signals
(define-class <hungry> (<test>))

[Class]<ginterface>
The base class for GLib’s interface types. Not derivable in Scheme.

[Primitive]gtype-register-static name parent type
Derive a new type named name from parent type. Returns the new <gtype>. This
function is called when deriving from <gobject>; users do not normally call this
function directly.

[Generic]gobject:get-property
Called to get a gobject property. Only properties directly belonging to the object’s
class will come through this function; superclasses handle their own properties.
Takes two arguments: the object and the property name.
Call (next-method) in your methods to invoke the default handler

[Method]gobject:get-property (object <gobject>) (name <symbol>)
The default implementation of gobject:get-property, which calls (slot-ref obj
name).

[Generic]gobject:set-property
Called to set a gobject property. Only properties directly belonging to the object’s
class will come through this function; superclasses handle their own properties.
Takes three arguments: the object, the property name, and the value.
Call (next-method) in your methods to invoke the default handler.

[Method]gobject:set-property (object <gobject>) (name <symbol>) (
value <top>)

The default implementation of gobject:set-property, which sets slots on the object.

Chapter 6: (gnome gobject gobject) 18

[Generic]make-gobject-instance
A generic defined to initialize a newly created <gobject> instance. make-gobject-
instance takes four arguments: the class of the object, its <gtype>, the object itself,
and the options, which is a list of keyword arguments.
This operation is a generic function so that subclasses can override it, e.g. so that
<gtk-object> can implement explicit destruction.

[Method]make-gobject-instance (class <top>) (type <top>) (object
<top>) (options <top>)

The default implementation of make-gobject-instance.

[Function]gobject-class-get-properties class
Returns a vector of properties belonging to class and all parent classes.

[Function]gobject-class-find-property class name
Returns a property named name (a symbol), belonging to class or one of its parent
classes, or #f if not found.

[Function]gobject-class-get-property-names class
Returns a vector of property names belonging to class and all parent classes.

[Function]gobject-interface-get-properties class
Returns a vector of properties belonging to class and all parent classes.

[Function]gobject-interface-find-property class name
Returns a property named name (a symbol), belonging to class or one of its parent
classes, or #f if not found.

[Function]gobject-interface-get-property-names class
Returns a vector of property names belonging to class and all parent classes.

[Function]gobject-get-property object name
Gets a the property named name (a symbol) from object.

[Function]gobject-set-property object name init-value
Sets the property named name (a symbol) on object to init-value.

Chapter 7: (gnome gobject generics) 19

7 (gnome gobject generics)

7.1 Overview

Generic functions for procedures in the (gnome gobject) module.

7.1.1 Mapping class libraries to Scheme

Guile-GNOME exists to wrap a C library, libgobject, its types, and the set of libraries
that based themselves on the GLib types.

Procedure invocation feels very similar in Scheme and in C. For example, the C gtk_
widget_show (widget) transliterates almost exactly to the Scheme (gtk-widget-show
widget).

GLib-based libraries are not random collections of functions, however. GLib-based li-
braries also implement classes and methods, insofar that it is possible in C. For example,
in the above example, show may be seen to be a method on instances of the <gtk-widget>
class.

Indeed, other object-oriented languages such as Python express this pattern directly,
translating the show operation as the pleasantly brief widget.show(). However this repre-
sentation of methods as being bound to instances, while common, has a number of draw-
backs.

The largest drawback is that the method itself is not bound to a generic operation.
For example, mapping the show operation across a set of widgets cannot be done with
the straightforward map(show, set), because there is no object for the show operation.
Instead the user must locally bind each widget to a variable in order to access a method of
the abstract show operation: map(lambda widget: widget.show(), set).

Additionally, most languages which express methods as bound to instances only select the
method via the type of the first (implicit) argument. The rule for these lanugages is, “gtk-
widget-show is an applicable method of the show operation when the first argument to show
is a <gtk-widget>.” Note the lack of specification for other arguments; the same object
cannot have two applicable methods of the show operation. A more complete specification
would be, “gtk-widget-show is an applicable method of the show operation when applied
to one argument, a <gtk-widget>.” It is a fine difference, but sometimes important.

For these and other reasons, the conventional way to implement generic operations in
Lisp has been to define generic functions, and then associate specific methods with those
functions. For example, one would write the following:

;; defining a generic function, and one method implementation
(define-generic show)
(define-method (show (widget <gtk-widget>))
(gtk-widget-show))

;; invoking the generic function
(show my-widget)

Chapter 7: (gnome gobject generics) 20

One benefit of this approach is that method definitions can be made far away in space and
time from type definitions. This leads to a more dynamic environment, in which methods
can be added to existing types at runtime, which then can apply to existing instances.

7.1.2 The semantics of generic functions in Guile-GNOME

Naturally, there is an impedance mismatch between the conventions used in the C libraries
and their Scheme equivalents. Operations in GLib-based libraries do not form a coherent
whole, in the sense that there is no place that defines the meaning of an abstract show
operation. For example, gtk-widget-set-state, which can make a widget become uned-
itable, and gst-element-set-state, which can start a video player, would both map to the
generic function set-state, even though they have nothing to do with each other besides
their name.

There is no conflict here; the methods apply on disjoint types. However there is a
problem of modularity, in that both methods must be defined on the same generic function,
so that (set-state foo bar) picks the correct method, depending on the types of foo and
bar.

This point leads to the conclusion that generic functions in Guile-GNOME have no
abstract meaning, apart from their names. Semantically, generics in Guile-GNOME are
abbreviations to save typing, not abstract operations with defined meanings.

7.1.3 Practicalities

This module defines a number of “abbreviations”, in the form of generic functions, for oper-
ations on types defined in the (gnome gobject) modules. Generic functions for generated
bindings like (gnome gtk) are defined in another module, (gnome gw generics), which
re-exports the public bindings from this module.

7.2 Usage

[Generic]get

[Method]get (object <gobject>) (name <symbol>)
A shorthand for gobject-get-property.

[Generic]set

[Method]set (object <gobject>) (name <symbol>) (value <top>)
A shorthand for gobject-set-property.

[Generic]emit

[Method]emit (object <gtype-instance>) (name <symbol>) (args <top>)
...

A shorthand for gtype-instance-signal-emit.

[Generic]connect

[Method]connect (object <gtype-instance>) (name <symbol>) (func
<procedure>)

A shorthand for gtype-instance-signal-connect.

Chapter 7: (gnome gobject generics) 21

[Method]connect (args <top>) ...
The core Guile implementation of the connect(2) POSIX call

[Generic]connect-after

[Method]connect-after (object <gtype-instance>) (name <symbol>) (
func <procedure>)

A shorthand for gtype-instance-signal-connect-after.

[Generic]block

[Method]block (object <gtype-instance>) (id <top>)
A shorthand for gsignal-handler-block.

[Generic]unblock

[Method]unblock (object <gtype-instance>) (id <top>)
A shorthand for gsignal-handler-unblock.

[Generic]disconnect

[Method]disconnect (object <gtype-instance>) (id <top>)
A shorthand for gsignal-handler-disconnect.

[Generic]connected?

[Method]connected? (object <gtype-instance>) (id <top>)
A shorthand for gsignal-handler-connected?.

[Generic]invoke

[Method]invoke (closure <gclosure>) (args <top>) ...
A shorthand for gclosure-invoke.

[Generic]create-signal

[Method]create-signal (class <gtype-class>) (name <symbol>) (
return-type <top>) (param-types <top>)

A shorthand for gtype-class-create-signal.

[Generic]get-signals

[Method]get-signals (class <gtype-class>)
A shorthand for gtype-class-get-signals.

[Generic]get-properties

[Method]get-properties (class <gtype-class>)
A shorthand for gobject-class-get-properties.

Chapter 7: (gnome gobject generics) 22

[Generic]get-property-names

[Method]get-property-names (class <gtype-class>)
A shorthand for gobject-class-get-property-names.

[Generic]find-property

[Method]find-property (class <gtype-class>) (name <symbol>)
A shorthand for gobject-class-find-property.

Chapter 8: (gnome gobject utils) 23

8 (gnome gobject utils)

8.1 Overview

Common utility routines.

8.2 Usage

[Function]GStudlyCapsExpand nstr
Expand the StudlyCaps nstr to a more schemey-form, according to the conventions
of GLib libraries. For example:

(GStudlyCapsExpand "GSource") ⇒ g-source
(GStudlyCapsExpand "GtkIMContext") ⇒ gtk-im-context
(GStudlyCapsExpand "GtkHBox") ⇒ gtk-hbox

[Variable]gtype-name->scheme-name-alist
An alist of exceptions to the name transformation algorithm implemented in
GStudlyCapsExpand.

[Function]gtype-name->scheme-name type-name
Transform a name of a <gtype>, such as "GtkWindow", to a scheme form, such
as gtk-window, taking into account the exceptions in gtype-name->scheme-name-
alist, and trimming trailing dashes if any.

[Function]gtype-name->class-name type-name
Transform a name of a <gtype>, such as "GtkWindow", to a suitable name of a
Scheme class, such as <gtk-window>. Uses gtype-name->scheme-name.

[Function]gtype-name->method-name type-name name
Generate the name of a method given the name of a <gtype> and the name of the
operation. For example:

(gtype-name->method-name "GtkFoo" "bar") ⇒ gtk-foo:bar

Uses gtype-name->scheme-name.

[Special Form]re-export-modules . args
Re-export the public interface of a module or modules. Invoked as (re-export-
modules (mod1) (mod2)...).

[Special Form]define-with-docs name docs val
Define name as val, documenting the value with docs.

[Special Form]define-generic-with-docs name documentation
Define a generic named name, with documentation documentation.

[Special Form]define-class-with-docs name supers docs . rest
Define a class named name, with superclasses supers, with documentation docs.

Chapter 9: (gnome gw support gobject) 24

9 (gnome gw support gobject)

9.1 Overview

Routines useful to *-spec.scm g-wrap files.

9.2 Usage

[Class]<gobject-wrapset-base>
The base class for G-Wrap wrapsets that use <gobject> types. Defines two slots,
type-aliases and type-rules, to hold auxiliary type information.

[Generic]add-type-alias!

[Method]add-type-alias! (wrapset <gobject-wrapset-base>) (alias
<string>) (name <symbol>)

Add an alias...

[Generic]lookup-type-by-alias

[Method]lookup-type-by-alias (wrapset <gobject-wrapset-base>) (name
<string>)

[Generic]add-type-rule!

[Method]add-type-rule! (self <gobject-wrapset-base>) (param-type
<string>) (typespec <top>)

[Generic]find-type-rule

[Method]find-type-rule (self <gobject-wrapset-base>) (param-type
<string>)

[Variable]construct-argument-list
[unbound!]

[Class]<gobject-type-base>

[Class]<gobject-classed-type>

[Generic]gtype-id

[Method]gtype-id (o <gobject-custom-gvalue-type>)

[Method]gtype-id (o <gobject-custom-boxed-type>)

[Method]gtype-id (o <gobject-class-type>)

[Method]gtype-id (o <gobject-flags-type>)

[Method]gtype-id (o <gobject-enum-type>)

[Method]gtype-id (o <gobject-interface-type>)

[Method]gtype-id (o <gobject-pointer-type>)

Chapter 9: (gnome gw support gobject) 25

[Method]gtype-id (o <gobject-boxed-type>)

[Method]gtype-id (o <gobject-object-type>)

[Method]gtype-id (o <gobject-classed-pointer-type>)

[Method]gtype-id (o <gobject-classed-type>)

[Class]<gobject-classed-pointer-type>

[Function]unwrap-null-checked value status-var code
Unwrap a value into a C pointer, optionally unwrapping #f as NULL.
This function checks the typespec options on value, which should be a <gw-value>.
If the null-ok option is set (which is only the case for value classes with null-ok in
its #:allowed-options), this function generates code that unwraps #f as NULL. If
null-ok is unset, or the value is not #f, code is run instead.

[Generic]wrap-object!

[Method]wrap-object! (ws <gobject-wrapset-base>) (args <top>) ...

[Generic]wrap-boxed!

[Method]wrap-boxed! (ws <gobject-wrapset-base>) (args <top>) ...

[Generic]wrap-pointer!

[Method]wrap-pointer! (ws <gobject-wrapset-base>) (args <top>) ...

[Function]wrap-opaque-pointer! ws ctype

[Generic]wrap-interface!

[Method]wrap-interface! (ws <gobject-wrapset-base>) (args <top>) ...

[Generic]wrap-flags!

[Method]wrap-flags! (ws <gobject-wrapset-base>) (args <top>) ...

[Generic]wrap-gobject-class!

[Method]wrap-gobject-class! (ws <gobject-wrapset-base>) (args <top>
) ...

[Special Form]wrap-custom-boxed! ctype gtype wrap unwrap

[Special Form]wrap-custom-gvalue! ctype gtype wrap-func unwrap-func

Chapter 10: (gnome gw support defs) 26

10 (gnome gw support defs)

10.1 Overview

Support for reading in Gtk .defs files as g-wrap instructions

10.2 Usage

[Function]load-defs ws file [overrides = #f]

[Function]load-defs-with-overrides ws defs

Chapter 11: (gnome gw support gtk-doc) 27

11 (gnome gw support gtk-doc)

11.1 Overview

Parsing a subset of the docbook emitted by gtk-doc into stexi.

11.2 Usage

[Function]docbook->sdocbook docbook-fragment
Parse a docbook file docbook-fragment into SXML. Simply calls SSAX’s xml->sxml,
but having made sure that ‘ ’ elements are interpreted correctly. Does not deal
with XInclude.

[Function]gtk-doc-sdocbook-title sdocbook
Extract the title from a fragment of docbook, as produced by gtk-doc. May return
#f if the title is not found.

[Function]gtk-doc-sdocbook-subtitle sdocbook
Extract the subtitle from a fragment of docbook, as produced by gtk-doc. May return
#f if the subtitle is not found.

[Function]gtk-doc-sdocbook->description-fragment sdocbook
Extract the "description" of a module from a fragment of docbook, as produced by
gtk-doc, translated into texinfo.

[Function]gtk-doc-sdocbook->def-list sdocbook process-def
Extract documentation for all functions defined in the docbook nodeset sdocbook.
When a function is found and translated into texinfo, process-def will be called with
two arguments, the name of the procedure as a symbol, and the documentation as a
deffn. process-def may return #f to indicate that the function should not be included
in the documentation; otherwise, the return value of process-def will be used as the
documentation.
This mechanism allows the caller of gtk-doc-sdocbook->def-list to perform fur-
ther processing on the documentation, including the possiblity of replacing it com-
pletely with documenation from another source, for example a file of hand-written
documentation overrides.

Chapter 12: (gnome gw support modules) 28

12 (gnome gw support modules)

12.1 Overview

This module implements some procedures useful to modules that use g-wrapped libraries.

12.2 Usage

[Function]export-all-lazy! symbols

[Special Form]re-export-modules . args
Re-export the public interface of a module; used like use-modules.

Concept Index 29

Concept Index

(Index is nonexistent)

Function Index 30

Function Index

(Index is nonexistent)

