
Simple is better
Building fast IPv6 transition mechanisms
on Snabb Switch

31 January 2016 – FOSDEM 2016

Katerina Barone-Adesi kbarone@igalia.com

Andy Wingo wingo@igalia.com

Snabb Switch
A toolkit for building network functions

High performance, flexible, hackable
data plane

The Tao of Snabb
Simple > Complex

Small > Large

Commodity > Proprietary

Simple > Complex
How do we compose network functions
from smaller parts?

Build inside of network function like
composing UNIX pipelines

intel10g | reassemble | lwaftr | fragment
| intel10g

Apps independently developed, linked
together at run-time

Simple > Complex
What is a packet?
struct packet {
 unsigned char data[10*1024];
 uint16_t length;
};

Small > Large
Early code budget: 10000 lines

Build in a minute

Constraints driving creativity

Small > Large
Secret weapon: LuaJIT

High performance with minimal fuss

Small > Large
Minimize dependencies

1 minute build budget includes LuaJIT
and all deps

Deliverable is single binary

Small > Large
Writing our own drivers, in Lua

User-space networking

The data plane is our domain, not the
kernel’s

❧

Not DPDK’s either!❧

Fits in 10000-line budget❧

Commodity > Proprietary
Open source (Apache 2.0)

Commodity > Proprietary
Open data sheets

Intel 82599 10Gb, soon up to 100Gb

Soon: Mellanox (they agree to release
data sheet!)

Also Linux tap interfaces, virtio host and
guest

Commodity > Proprietary
Double down on 64-bit x86 servers

Prefer CPU over NIC where possible

Embrace the memory hierarchy

Storytime!
“We need to do work on data... but
there’s just so much of it and it’s really
far away.”

Storytime!
Modern x86: who’s winning?

Clock speed same since years ago

Main memory just as far away

HPC people are winning
“We need to do work on data... but
there’s just so much of it and it’s really
far away.”

Three primary improvements:

CPU can work on more data per cycle,
once data in registers

❧

CPU can load more data per cycle,
once it’s in cache

❧

CPU can make more parallel fetches
to L3 and RAM at once

❧

Networking folks can win
too
Instead of chasing zero-copy, tying
yourself to ever-more-proprietary
features of your NIC, just take the hit
once: DDIO into L3.

Copy if you need to – copies with L3 not
expensive.

Software will eat the world!

Networking folks can win
too
Once in L3, you have:

wide loads and stores via AVX2 and
soon AVX-512 (64 bytes!)

❧

pretty good instruction-level
parallelism: up to 16 concurrent L2
misses per core on haswell

❧

wide SIMD: checksum in software!❧

software, not firmware❧

</storytime>
So what about the lwAFTR

IPv6 transition on Snabb: a lwAFTR

Why IPv6?

● The IPv4 address space is exhausted

- IANA top level exhaustion in 2011

- 4/5 Regional Internet Registries exhausted

- September 2012 in Europe

- September 2015 in the US

- AfriNIC within the next few years
● The internet is still growing
● Moving to IPv6 helps

IPv6 transition mechanisms

● Users want everything to continue working

… including IPv4 websites, networked games,
etc

● Some user equipment cannot do IPv6
● Several options: NAT64, 464XLAT, DS-Lite...

Why Lightweight 4over6?

● Similar to DS-Lite, but less centralized state
● Share IPv4 addresses between users
● Each user gets a port range
● Allows providers to have a simpler architecture:

pure IPv6, not dual-stacked IPv4 and IPv6, in
their internal network

● Standardized as RFC 7596 in 2015

Two main parts: B4 and AFTR

● Both encapsulate and decapsulate IPv4-in-IPv6
● Each user (subscriber) has a B4
● The network provider has one or more AFTRs,

which store per-subscriber (not per-flow)
information

● The information: The B4's IPv6 address, IPv4
address, and port range.

lw4o6 architecture

Lw4o6 address sharing

IPv4 is tunnelled in IPv6

Snabb lwAFTR

● Started July 2015
● Proof of concept data plane October 2015
● It's already usable and fast.
● http://github.com/igalia/snabbswitch/

- lwaftr* branches

- Apache License v2

Performance

● Hardware: two 10-gigabit NICs

- Intel 82599ES, SFI/SFP+
● Xeon processor: E5-2620 v3 @ 2.40GHz
● Snabb-lwaftr alpha release
● 550-byte packets
● Over 4 million packets/second

→ over 17 gigabit/second handled on one core

Challenges

● Correctly handling ICMP

- conveying failure information, for instance to
an IPv4 host if a failure occurs within the tunnel

● Speed
● Speed with a lot of subscribers
● Correctness
● Hairpinning

Hairpinning: client-to-client traffic

And we’re back

Implementation challenges
Binding table lookup - Port partition

When to hairpin?

Virtualization

Policy

Configuration

Binding table lookup
Say, Belgium: millions of tunnels

Per-tunnel: IPv4, IPv6 of B4, port set ID

At least 4 + 16 + 2 = 22 bytes

2M entries: 44MB

You can’t fit it in L3.

Binding table lookup
So always budget for an L3 cache miss –
but only one!

4 MPPS in: 250 ns/packet

One cache miss RTT (80 ns) within
budget

Many fetches can happen in that RTT

Binding table lookup: v1
Open-addressed robin-hood hash table
with linear probing

Result probably right where we first look
for it, otherwise in adjacent memory,
might fetch adjacent cache lines

Binding table lookup: v2
Maximum probe length around 8 for 2e6
entries, 40% occupancy

Stream in all 8 entries at once in parallel

Branchless binary search over those 8
entries

Binding table lookup: v3
Stream in all 8 entries at once in parallel

for multiple packets in parallel❧

32 packets at a time: amortized 50ns/
lookup

Worst-case bounds!

Port partitioning
Different IPv4 addresses can have their
ports partitioned in different ways

Need f(ipv4, port) -> params

Current solution: partition IPv4 space
into ranges with same parameters, use
binary search

Hairpinning
Problem: after decapsulating IPv4
packet, send to internet or re-tunnel back
to IPv6?

Answer: Use port partition as quick
check, if so do the hairpinning

Yay software

Virtualization
Want to make a virtualized lwaftr

Missing virtio-net implementation

Work by Virtual Open Systems; thanks!

Usual workload: One Snabb-NFV per
interface on the host

Same performance

Yay software!

Policy
Ingress/egress filtering

Pflua! https://github.com/Igalia/pflua

As an app!

Configuration
Compile binding table from text

Update/control plane TBD

Future work
Yang

Smaller packets

Integrate ILP binding table fetch

40Gb

Thanks!
kbarone@igalia.com

wingo@igalia.com

https://github.com/SnabbCo/snabbswitch

https://github.com/Igalia/snabbswitch

ps. We are hiring!

