
Applications of Fold to XML Transformation

Andy Wingo

wingo@pobox.com

Abstract
The benefit of considering XML parsing as a fold operation over the
tree of elements is perhaps the best-kept secret in XML. Applying
common functional programming patterns to the XML problem
domain yields parsers that are both more expressive and less prone
to common bugs.

This paper investigates the usefulness of fold as not just a pat-
tern for parsing, but for transformation of parsed XML as well. A
new variant of fold is introduced that is shown to underly the ex-
isting patterns of transforming XML, while providing functional-
ity heretofore possible only via second-order traversal. Real-world
examples are explored, including the motivating problem for this
investigation: layout of declarative documents into Scalable Vector
Graphics (SVG).

1. Introduction
Let us consider a mini-language for describing slides in XML
(W3C 2006). For example, the following document describes a
presentation composed of one slide:

<slides>
<slide>
<title>Hi.</title>
<para>Hello
world</para>
</slide>

</slides>

Slides are for giving presentations, of course, and to present this
document, the author needs to transform it into a form that some
program can read and display on a screen. The goal of this paper
is to investigate the applicability of standard functional program-
ming techniques to effecting XML transformations, such as those
necessary to present the above slides example. Specifically, we will
show that the fold operator underlies the best of the existing traver-
sal combinators, and can fruitfully be used as a scaffolding when
deriving new ones.

Section 2 reviews one existing technique for XML transforma-
tion, pre-post-order, along with some of its limitations. Section
3 discusses the nature of this operator’s limitations, resulting in the
definition of a new fold variant, foldts*, in section 4. Section 5
shows that pre-post-order can be expressed as implementations
of this new fold operator. Finally, in section 6 we derive a new

Pre-print submitted to SFP2007. Copyright c©2007 Andy Wingo.

(slides
(slide
(title "Hi.")
(para "Hello" (br) "world")))

Figure 1. SXML representation of the slides example document.

<html>
<body>
<div class="slide">
<h1>Hi.</h1>
<p>Hello
world</p>

</div>
</body>

</html>

Figure 2. Possible HTML representation of the slides example

(html
(body
(div (@ (class "slide"))

(h1 "Hi.")
(p "Hello" (br) "world"))))

Figure 3. SXML representation of the HTML of Figure 2

traversal combinator, fold-layout, suitable for layout of Scalar
Vector Graphics (SVG).

All of the source code presented in this paper is available for
download at http://wingolog.org/pub/fold-xml.tar.gz.

2. SSAX, SXML, SXSLT, and pre-post-order
This paper takes as its base Oleg Kiselyov’s work on the SSAX
project, a functional XML parsing and transformation suite (Kiselyov
2001; Kiselyov et al. 2006). SSAX is most commonly used via its
standard parser, which returns an S-expression representation of
the source XML document. For example, the SXML representa-
tion of our slides source document can be seen in Figure 1. While
this paper will focus on processing SXML with Scheme, the dis-
cussions apply generally to any functional language operating on a
parsed representation of an XML source document.

As a first try in presenting our slides example, let us take ad-
vantage of the ubiquity of the web browser, using it as a viewer
application. A possible transformation of the source document into
HTML (W3C 2002) is shown in Figure 2. Figure 3 shows how the
output HTML parses as SXML.

Transforming this Scheme representation of the slides doc-
ument into HTML is a simple operation of traversing the tree
depth-first, performing different replacements at each level de-
pending on the tag. While one could write a recursive traversal-

SFP 2007 1 2007/6/29

`((slides . ,(lambda (tag . kids)
`(html (body ,@kids))))

(slide . ,(lambda (tag . kids)
`(div (@ (class "slide"))

,@kids)))
(title . ,(lambda (tag . kids)

`(h1 ,@kids)))
(para . ,(lambda (tag . kids)

`(p ,@kids)))
(br . ,(lambda (tag . kids)

`(br)))
(*text* . ,(lambda (tag txt) txt)))

Figure 4. Slides-to-HTML pre-post-order bindings

and-replacement procedure for every transformation task, it is
convenient to separate out the traversal process into a dedicated
operator. In this way, the user only has to think about the replace-
ment operations. The SXML set of tools provides such an oper-
ator, pre-post-order (Kiselyov and Krishnamurthi 2003). It is
invoked as:

(pre-post-order bindings tree)

pre-post-order is named as it is to indicate that it can do both
bottom-up (post-order) and top-down (pre-order) traversals. In
these first examples, we will speak only of the post-order traversals,
which replace each node of the tree with the result of applying the
appropriate binding to the node.

The user of pre-post-order supplies a suitable set of bind-
ings to transform the document at hand. A binding specifies a pro-
cedure (“handler”) to apply to a given kind of SXML node, which
should return a replacement for that node. For example, a handler
for transforming para to p could look like this:

(lambda (tag . children)
`(p ,@children))

The bindings set is simply a list of these handlers, keyed by the
tag that they should apply to. In this case, suitable bindings can be
seen in Figure 4. Of course, since both pre-post-order and the
bindings are normal Scheme functions, XML tree transformation
is not limited to simple substitution. One has the full expressive
power of a general-purpose language.

I have been using pre-post-order for a few years now, and
am very happy with it. However a new problem motivated the
writing of this paper: the transformation of declarative documents
like our <slides> example into SVG, an XML vector graphics
format (W3C 2003). For example, one way to render the slides
example into SVG would be the following:

<svg width="1024" height="768">
<g><text x="96" y="216"

font-size="64px">
<tspan x="96" y="216">Hello</tspan>
<tspan x="96" y="280">world</tspan>

</text></g>
</svg>

The most striking observation that results from this output, besides
the profusion of seemingly-arbitrary numbers, is that the strings
“Hello” and “world” need to be rendered differently. Recall our
text transformer from Figure 4:

`(*text* . ,(lambda (tag txt) txt))

When pre-post-order encounters a string leaf in the SXML tree,
it will call the procedure in the above binding with the string as

`((para
. ,(lambda (tag . procs)

`(text
(@ (x "96") (y "216"))
,@(if (null? procs) '())

(apply (car procs)
96 ; initial x
216 ; initial y
(cdr procs))))))

(*text*
. ,(lambda (_ txt)

; second-order: return a closure
(lambda (x y . procs)

(cons
`(tspan (@ (x ,x) (y ,y))

,txt)
(if (null? procs) '()

(apply (car procs)
x
(+ y 64) ; increment y
(cdr procs))))))))

Figure 5. Second-order pre-post-order stylesheet for para-
graph layout

txt1. There are no other parameters to the transformation, so it is
impossible for the text handler to render two strings differently2.

3. Context-dependent transformations
Our problem is that the standard XML transformation combina-
tor, pre-post-order, does not appear to allow context-dependent
transformations. This is not precisely the case; as suggested in
Kiselyov and Krishnamurthi 2003, we can obtain the desired effect
by performing a second-order traversal. Instead of returning values
directly, we make the *text* handler return a function, and make
the para handler apply those functions to each other in order.

Figure 5 gives bindings that could work to transform para into
SVG. In this example, the text handler increments the y position by
64 at every line3. The result of processing the para element is still
a first-order value because it starts the initial function application.

It is insufficient, however, to perform a partial second-order
transformation. Layout of multiple paragraphs in a slide creates the
need for paragraphs to be laid out differently, e.g. with different
initial x, y positions. The para handler itself would need to return
a closure. Likewise, a desire to print the slide number on each slide
creates the need for the slide handler to know its number: a context-
dependent transformation.

Clearly this solution lacks the grace of the stylesheet in Figure
4. With second-order transformations, we reintroduce traversal into
the processing problem. In addition, we needlessly allocate a tree
of closures as an intermediate step to producing the output tree4.

Fortunately there is another way to approach this problem, for
which we turn to Kiselyov’s XML parsing paper (Kiselyov 2001).
First we realize that pre-post-order is a multithreaded transfor-

1 The tag will always be '*text*, an oddity of pre-post-order’s inter-
face.
2 Impossible, that is, unless we introduce imperative elements to the text
transformer, with all the potential for bugs that that would entail.
3 For simplicity we are laying out separate text fragments on separate lines.
Layout of actual paragraphs would in general require font metrics and a full
unicode support library.
4 I am given to understand that this is not the case in lazy languages, such
as Haskell.

SFP 2007 2 2007/6/29

(define (atom? x)
(not (pair? x)))

(define (foldt fup fhere tree)
(if (atom? tree)

(fhere tree)
(fup (map (lambda (kid)

(foldt fup fhere kid))
tree))))

Figure 6. foldt

(define (assq-ref alist key default)
(cond ((assq key alist) => cdr)

(else default)))
(define (post-order/foldt bindings tree)

(let* ((err (lambda args
(error "no binding available")))

(default (assq-ref bindings
'*default* err)))

(define (fup kids)
(apply
(assq-ref bindings (car kids) default)
kids))

(define (fhere txt)
((assq-ref bindings '*text* err)
'*text* txt))

(foldt fup fhere tree)))

Figure 7. post-order in terms of foldt

mation, where the result of transforming one node is independent
of its siblings.

That is to say, post-order can be implemented with the stan-
dard tree fold operator, foldt, shown in Figure 6. foldt requires
the user to supply two hooks: one for processing leaves, and one
for bottom-up processing of branches. The former corresponds to
our *text* handler from Figure 4, and the latter corresponds to all
other nodes (para, slide, etc.). A post-order based on foldt
will have fup and fdown perform their replacements based on han-
dlers obtained from the bindings set. Figure 7 shows a definition
of post-order/foldt, already a powerful tool capable of trans-
forming our slides example into HTML.

The “multi-threadedness” of foldt comes from its use of map,
which does not specify the order in which its input list is mapped.
map could process its list from multiple threads of execution with
no change to its semantics. In order for identical siblings to be pro-
cessed differently, we need to perform a single-threaded traversal,
threading a monadic seed through all operations. The need for this
extra seed argument indicates that we need a different fold algo-
rithm, the more general foldts, as presented in Kiselyov 2001.

Figure 8 shows the implementation of foldts. Note that the
fhere of foldts has an additional argument, the seed at that point
in the traversal. We can make that seed carry layout information in
addition to the transformed document, propagating such informa-
tion as slide number and current x, y position across the transfor-
mation.

However, just as one would prefer to write transformations
with post-order rather than foldt, it would be good to write
a higher-order data-driven combinator to wrap foldts in a more
usable interface. The following section examines the requirements
for such an operator.

(define (fold proc seed list)
(if (null? list)

seed
(fold proc (proc (car list) seed)

(cdr list))))
(define (foldts fdown fup fhere seed tree)

(if (atom? tree)
(fhere seed tree)
(fup seed

(fold (lambda (kid kseed)
(foldts fdown fup fhere

kseed kid))
(fdown seed tree)
tree)

tree))))

Figure 8. fold and foldts

bindings ::= (binding...)
binding ::= (tag bindings . handler)

| (tag ∗preorder∗ . handler)
| (tag ∗macro∗ . handler)
| (∗default∗ . handler)
| (∗text∗ . handler)

tag ::= symbol
handler ::= tree → tree

Figure 9. pre-post-order bindings syntax

4. foldts*-values, a new fold operator
As a first step to making a replacement for pre-post-order based
on fold, we should be sure that pre-post-order itself can be
expressed in terms of foldts. Besides the post-order template
application that we have already seen, pre-post-order offers two
more features:

1. Two variants of pre-order traversal, *preorder* and *macro*,
differing in that the latter implicitly implicitly re-runs the result
of pre-order traversal through the transformer. Lisp hackers will
note the similarity to defmacro expansion.

2. Context-sensitive bindings. For example, although we did not
write it this way, the *text* handler we defined could only
apply within a para element.

A full bindings grammar is given in Figure 9.
Let us first consider *preorder* and *macro* processing. The

underlying desire under these two processing methods is for a user
of pre-post-order to modify the tree being traversed, during
traversal (pre-order). Such tree modification cannot be performed
in foldts, so we have to create a modified version of that combi-
nator. We can implement pre-order tree munging by hooking into
the pre-order function fdown, making it return a possibly-modified
subtree in addition to a new seed value.

This new fold variant, foldts*, is shown in Figure 10. foldts*
is foldts, but altered so that fdown returns two values. In this way
we satisfy our requirement to support *preorder* and *macro*
processing.

Our implementation of foldts* is complicated by Scheme’s
clunky handling of multiple values. Languages with first-order
tuples would express this pattern more elegantly (Hutton 1999).

Likewise, the plan to implement context-sensitive bindings is
more straightforward than its implementation. We need to pass
around more information in the seed, not just the transformed

SFP 2007 3 2007/6/29

(define (foldts* fdown fup fhere seed tree)
(if (atom? tree)

(fhere seed tree)
(call-with-values

(lambda () (fdown seed tree))
(lambda (kseed tree)

(fup seed
(fold (lambda (kid kseed)

(foldts* fdown fup fhere
kseed kid))

kseed
tree)

tree)))))

Figure 10. foldts*

(define (fold-values proc list . seeds)
(if (null? list)

(apply values seeds)
(call-with-values

(lambda ()
(apply proc (car list) seeds))

(lambda seeds
(apply fold-values proc (cdr list)

seeds)))))

Figure 11. fold-values

tree. fdown would then augment the seed to hold any specialized
bindings, and fup and fhere would take their bindings from the
seed instead of from the evaluation environment. Finally, fup strips
the custom bindings off the seed, leaving the rest of the traversal
with the original bindings.

In principle, making a multi-valued seed does not require further
modifications to the foldts* algorithm. One simply constructs
the seed as a record or other compound type. With Scheme, how-
ever, lack of tuples makes it much more convenient to define a
foldts*-values that takes as many seeds as the user wants, pass-
ing them all around to the functions fdown, fup, and fhere.

We begin by defining a variant of the normal fold that takes
multiple seeds, in Figure 11. Note that the list argument has been
moved ahead so that all seeds are at the end of the argument list. We
then build on fold-values to define foldts*-values in Figure
12.

The casual observer might be forgiven for missing the elegance
of foldts*-values. To be explicit, it has three chief virtues:

Generality. foldts*-values builds on the generality of foldts.
In the single-list case it reduces to fold. It adds the
ability to perform pre-order rewrites of the tree being
traversed.

Concision. fdown, fup, and fhere implementations are straight-
forward and non-recursive. Multiple seeds get destruc-
tured into the argument list, and multiple value returns
are made via the standard first-order values function.
Processing is completely separated from traversal.

Efficiency. As with foldts, traversal is strictly O(n) in the num-
ber of nodes visited. No intermediate garbage need be
generated.

The last point about garbage generation might not be readily ap-
parent. It is true that an implementation of foldts*-values for
any number of seeds will produce garbage, without advanced type
inferencing. However we can avoid the calls to both apply and

(define (foldts*-values fdown fup fhere
tree . seeds)

(if (atom? tree)
(apply fhere tree seeds)
(call-with-values

(lambda () (apply fdown tree seeds))
(lambda (tree . kseeds)

(call-with-values
(lambda ()

(apply fold-values
(lambda (tree . seeds)

(apply foldts*-values
fdown fup fhere
tree seeds))

tree kseeds))
(lambda kseeds

(apply fup tree
(append seeds kseeds))))))))

Figure 12. foldts*-values

append via macro-expanding foldts*-values for a specific
number of values. In that way, most Scheme implementations will
avoid heap allocation altogether.

5. pre-post-order in terms of foldts*-values
As a first example, let us augment our earlier implementation
of post-order from Figure 7 to support context-sensitive bind-
ings. Context-sensitive bindings are not supported in Figure 7’s
post-order/foldt because foldt only provides hooks for
bottom-up rewrites, and the bindings should be modified top-down,
in a manner similar to lexical scoping.

Logically, therefore, the strategy for implementing context-
sensitive bindings via foldts*-values focuses on the fdown
procedure. Furthermore, given that we already have to traverse the
bindings list in fdown in order to find the lexical bindings, we can
make fdown note the post-order handler at the same time, passing
it in the seed to be called later in fup5. This approach will prove
advantageous when it comes time to implement the *preorder*
and *macro* processing for pre-post-order.

We will have three seeds passed around in post-order: the
bindings, the handler that fup will call, and the return value that
we are building up. Figure 13 shows the implementation.

A number of observations come to mind after seeing the
post-order of Figure 13. On the positive side, almost all of the
code in the example is concerned with the problem at hand, with
only some “boilerplate” at the end due to Scheme’s multiple-value
handling. None of the code deals with traversal.

On the negative side, the implementation does make some
garbage. It calls reverse in fup because the result of the bottom-
up transformation is cons’d up from left to right; that is, because
we are using fold-left instead of fold-right.

More grave is the new implementation’s verbosity. It is less
readable than post-order/foldt, and less readable than the
canonical implementation that uses explicit recursion (not shown in
this paper). Hutton suggests that most recursive algorithms suffer a
loss of readability when expressed as fold operations, but then goes
on to state that they gain by virtue of being easier to reason about
(Hutton 1999). While it is true that I feel a subjective comfort in the
correctness of a fold-based traversal operator, I will have to leave
more formal proofs to others. From the perspective of this paper,

5 The post-order handler might be considered to be the continuation of the
bottom-up rewrite for that subtree.

SFP 2007 4 2007/6/29

(define (post-order bindings tree)
(define (err . args)

(error "no binding available" args))
(define (fdown tree bindings pcont ret)

(let ((tail (assq-ref bindings (car tree)
#f)))

(cond
((not tail) ; default binding
(let ((default (assq-ref bindings

'*default* err)))
(values tree bindings default '())))

((pair? tail) ; lexical bindings
; with handler

(let ((new-bindings (append (car tail)
bindings))

(cont (cdr tail)))
(values tree new-bindings cont '())))

(else ; handler found
(values tree bindings tail '())))))

(define (fup tree bindings cont ret
kbindings kcont kret)

(values bindings cont
(cons (apply kcont (reverse kret))

ret)))
(define (fhere tree bindings cont ret)

(define (tcont x)
(if (symbol? x)

x ; pass tags through
((or (assq-ref bindings '*text* #f)

(assq-ref bindings '*default* err))
'*text* x)))

(values bindings cont
(cons (tcont tree) ret)))

(call-with-values
(lambda ()

(foldts*-values fdown fup fhere tree
bindings #f '()))

(lambda (bindings cont ret)
(car ret))))

Figure 13. post-order in terms of foldts*-values, with sup-
port for context-sensitive bindings

the important property of this version of post-order is that it is
extensible: there is a clear mechanism by which we might thread a
monadic seed through the traversal.

Indeed, the only part of the post-order implementation that
needs to change to implement *preorder* and *macro* process-
ing is the fdown handler. A suitable redefinition of fdown is given
in Figure 14 . There is some inelegance in the *preorder* case,
because fup expects the kids to be in reverse order, but otherwise
the extension is straightforward.

6. SVG layout with foldts*-values
Finally, we are ready to deal with the motivating problem for this
paper, functional programming techniques for SVG layout. Layout
is a single-threaded operation: every text and graphic object takes
up some part of the “page”, meaning that as the layout proceeds,
there is a constantly-growing region of space that is used up and
should not be allocated to subsequent elements. For example, two
subsequent text lines should not print on top of each other. We will
need to thread some representation of this already-allocated space
through the entire layout operation.

(define (fdown tree bindings pcont ret)
(let ((tail (assq-ref bindings (car tree)

#f)))
(cond
((not tail)
(let ((default (assq-ref bindings

'*default* err)))
(values tree bindings default '())))

((pair? tail)
(let ((cont (cdr tail)))

(case (car tail)
((*preorder*)
(values '() bindings

(lambda x (reverse x))
(apply cont tree)))

((*macro*)
(fdown (apply cont tree) bindings

pcont ret))
(else
(let ((new-bindings (append (car tail)

bindings)))
(values tree new-bindings cont

'()))))))
(else
(values tree bindings tail '())))))

Figure 14. A replacement fdown to turn Figure 13 into
pre-post-order

In general, for two-dimensional layout, the already-allocated
space is a set of polygons and half-planes in Cartesian space. Each
element to be layed out on the page would have to determine
which space is available, and choose a location in that space in
which to render itself. This paper takes the drastically simplified
view that these polygons are rectangular, contiguous and stretch
for the width of the output medium. Furthermore each element may
reserve some amount of horizontal space on the left-hand side, for
left-to-right locales. In this way we can conflate the representation
of the layout with the algorithm to choose a rendering space by
representing the layout as a constantly-advancing x, y pen position,
as in a typewriter6.

While it would be possible at this point to define a derivate of
pre-post-order that threads the x, y pen position through the
traversal and handler procedures, it would be distasteful to hard-
code a line height of 64 pixels into the *text* handlers as we did
in Figure 5. It would be useful to define a layout operator of more
general utility, like pre-post-order. To this effect, consider that
layout of objects is always parameterized in a number of ways:
line spacing, font size, margins, etc. To be of maximum utility, our
operator should provide these parameters to the layout handlers. In
addition, it would be useful for these parameters to be hierarchical
in the sense of the web’s Cascading Style Sheets (CSS), whereby
each level of the document tree can override certain parameters
(W3C 1999a). One might wish to render a certain paragraph in a
different font, for example.

Let this new combinator be named fold-layout. It will invoke
foldts*-values with the three seeds of pre-post-order: the
bindings, post-handler, and the return value. Additionally, it will
have two extra seeds: the currently allocated space (the “current
layout”), and the parameters.

6 Readers seeking actual layout algorithms are probably now disappointed.
I prefer to think of it as leaving open areas of investigation.

SFP 2007 5 2007/6/29

(define (fold-layout bindings params layout tree)
(define (err . args)

(error "no binding available" args))
(define (fdown ...) ...)
(define (fup ...) ...)
(define (fhere ...) ...)
(call-with-values

(lambda ()
(foldts*-values
fdown fup fhere tree
bindings #f params layout '())

(lambda (bindings cont params layout ret)
(values (car ret) layout))))

Figure 15. Skeleton of fold-layout

(cartouche (@ (line-color "red")
(text-height 56))

(para "Warning: Smoking Kills"))

Figure 16. Example source document for fold-layout transfor-
mation

(g (rect (@ (fill "none") (stroke "red")
(stroke-width "4")
(width "660") (height "120.0")
(x "0") (y "0")
(ry "20")))

(text (@ (xml:space "preserve")
(font-size "56")
(font-family "Georgia")
(x "32")
(y "88"))

(tspan (@ (x "32") (y "88"))
"Warning: Smoking Kills")))

Figure 17. Result of transforming Figure 16 into an SVG fragment

fold-layout itself will take four arguments: the set of bind-
ings, the initial parameters, the initial layout, and the SXML docu-
ment. It will return two values, the transformed document and the
final layout.7 Figure 15 gives the skeleton of fold-layout, leav-
ing us the task of defining fdown, fup, and fhere, along with de-
termining the representation of the bindings, params, and layout
seeds.

In the end we want a usable operator; that is, an operator whose
capabilities are adequate for its anticipated uses. We have already
mentioned some of the operator’s desired capabilities, but to keep
us honest we should focus concretely on an example document. Let
us use as an example the SXML from Figure 16. The intention is
to transform the source document into SVG that has a paragraph
inside a box with rounded corners. The intended output document
is given in Figure 17, and an annotated rendering of the output SVG
is shown in Figure 18.

When traversing the source document, we have a number of
well-defined places that we can hook into to modify the seeds. The

7 The final layout might be useful to pass to another invocation of
fold-layout.

Figure 18. Annotated rendering of Figure 17

bindings ::= (binding...)
binding ::= (tag handlerpair...)

| (∗default∗ . posthandler)
| (∗text∗ . texthandler)

tag ::= symbol
handlerpair ::= (pre− layout . prelayouthandler)

| (post . posthandler)
| (pre . preorderhandler)
| (macro . macrohandler)
| (bindings . bindings)

Figure 19. Partial definition of fold-layout bindings syntax.
The “handler” types are functions.

following subsections simulate the traversal, noting the changes
that the seeds should undergo at each point8.

6.1 fdown cartouche
Here we enter the processing of the cartouche. The layout seed
(pen position) is what was passed into fold-layout as its initial
value, and is represented in Figure 18 by the topmost horizontal
line. Because we want to make some space between the red outline
box and the paragraph, we should return a layout advanced by the
cartouche’s top padding, and indented in the x direction by the
amount of left padding.

The cartouche’s top padding itself should be taken from the pa-
rameters, augmented by any parameters set on the cartouche el-
ement itself. We can take the parameters from the XML attributes,
represented in SXML as a subelement with tag @, which must fol-
low the initial tag. In this case, the specific parameters are the
line-color and text-height attributes. Since the parameters
are lexically scoped, we can use a pattern similar to that of sim-
ple Scheme interpreters, representing parameters as a list of asso-
ciation lists. At each descent into a new SXML node, we cons the
new parameters onto the list. Lookup proceeds left-to-right in the
parameters list, stopping at the first alist in which a parameter is
found.

Regarding the bindings, we will need potentially more than one
binding. For example, we will see that in the cartouche document
we need a post-order binding to render the box, in addition to a
pre-layout binding to advance the pen. Here we break compatibil-
ity with pre-post-order and define the bindings as an alist of
tagged alists, with exceptions for *default* and *text*. A par-
tial definition of the bindings syntax is given in Figure 19.

Finally, the fdown handler can do pre-order rewrites of the tree.
In my experience, this is useful when constructing domain-specific
SXML dialects, and so should be supported in fold-layout. For-
tunately we already implemented it for pre-post-order. While
we are doing the rewrite, given that we already process the at-

8 The seeds do not change in the imperative sense, of course; they change
in the sense that the old values are thrown away, and the rest of the traversal
proceeds with the values returned by the fdown, fup, and fhere handlers,
as appropriate.

SFP 2007 6 2007/6/29

(define (cartouche-pre-layout tree params layout)
(let ((x (layout-x layout))

(y (layout-y layout)))
(let-params params (margin-left margin-top)

(make-layout (+ x margin-left)
(+ y margin-top)))))

Figure 20. Example pre-layout handler for cartouche

tributes as parameters, we can dispense with recursing into @ al-
together.

The fdown handler has a lot of work to do. It can potentially
modify all of the seeds (bindings, params, layout, return value,
post-layout handler), in addition to the tree itself. To make a us-
able interface for the user of fold-layout, we will need to di-
vide this functionality into separate handlers with sensible defaults.
This paper’s approach to parameter and bindings specialization can
be coded directly into fdown. The pre-layout pen advancement
depends on the current parameters, the tree being processed, and
the current layout; as such the prelayouthandler type of Figure
19 is tree → parameters → layout → layout, in Haskell
notation9. Pre-order and macro rewrites can be treated the same
as in pre-post-order, with both types preorderhandler and
macrohandler equivalent to tree → tree. Figure 20 shows a
suitable pre-layout handler for this example, for suitable defini-
tions of make-layout, layout-x, and layout-y. Also, Figure 20
uses without definition the macro let-params, which binds lexical
variables from the parameters list.

6.2 fdown para
The para element presents no special problems. We have already
discussed the generic nature of parameter and bindings specializa-
tion, and of pre-order rewrites. The one thing that one might want
to do to paragraphs in pre-order would be to advance the pen to
account for any margins or padding, which would take place in the
pre-layout handler.

6.3 fhere *text*
Here we render our first element. Recall the desired output from
Figure 17:

(tspan (@ (x "32") (y "88"))
"Warning: Smoking Kills)))

In SVG, the x and y positions of text are relative to the baseline,
which in latin scripts corresponds roughly to the bottom of the char-
acters. We then take our current layout, increment its y by the cur-
rent font-size as taken from the parameters, and render the tspan
at the unmodified x and the new y. The result of the text handler is
then the tspan output, as well as a new layout advanced by the cur-
rent linespacing. That is to say, that the type texthandler is equiv-
alent to string → parameters → layout → (tree, layout)10.
An implementation of the text handler is defined in Figure 21.

6.4 fup para
To define the post-order handler for para, we again look to the
desired SVG output from Figure 17:

(text (@ (xml:space "preserve")
(font-size "56")

9 This notation indicates that the last type is the return type, and all others
are the argument types.
10 The parenthesized (tree, layout) indicates that the procedure returns
two values.

(define (make-text-x params layout)
(layout-x layout))

(define (make-text-y params layout)
(let-params params (text-height)

(+ text-height (layout-y layout))))
(define (layout-advance-text-line params layout)

(let-params params (text-height line-spacing)
(make-layout (layout-x layout)

(+ (* text-height line-spacing)
(layout-y layout)))))

(define (text-handler text params layout)
(values
(layout-advance-text-line params layout)
`(tspan

(@ (x ,(number->string
(make-text-x params layout)))

(y ,(number->string
(make-text-y params layout))))

,text)))

Figure 21. Example text handler for SVG layout

(define (p-post tag params old-layout layout kids)
(values
layout
(let-params params (text-height font-family)

`(text
(@ (xml:space "preserve")

(font-size ,(number->string text-height))
(font-family ,font-family)
(x ,(number->string

(make-text-x params old-layout)))
(y ,(number->string

(make-text-y params old-layout))))
,@kids))))

Figure 22. Example post-layout handler for para

(font-family "Georgia")
(x "32")
(y "88"))

...)

The SVG text model allows multiple spans of text (tspans) to be
regarded as a single element, so as to allow the human user to select
lines in a paragraph with a mouse, among other applications. This
works well enough for our idea of paragraphs. We wrap the child
tspan elements in a text element, whose x and y are identical
to those of the first tspan. In addition, the para constructs a
style attribute for the output SVG based on which parameters
were specialized when going into the para element. Finally, as in
the text handler, the post-order handler will return an advanced pen
position, accounting for the layout of its kids and any padding that
the para chooses to add.

We are free to choose a convenient type for posthandler,
for which convenient formulation is tag → parameters →
layout → layout → (tree...) → (layout, tree). The two
layouts correspond to the layout of the parent and the layout after
processing the child trees, respectively. The last argument is a list of
children, not a tree by itself because it omits the tag and attributes.
Figure 22 shows a simple post-layout handler that could work for
para.

SFP 2007 7 2007/6/29

(define (cartouche-post tag params old-layout
layout kids)

(let ((oldx (layout-x old-layout))
(oldy (layout-y old-layout))
(newy (layout-y layout)))

(let-params params (margin-bottom stroke-width
line-color page-width)

(values
(make-layout oldx (+ newy margin-bottom))
`(g (rect

(@ (fill "none") (stroke ,line-color)
(stroke-width ,(number->string

stroke-width))
(width ,(number->string

(- page-width (* 2 oldx))))
(height ,(number->string

(- newy oldy)))
(x ,(number->string oldx))
(y ,(number->string oldy))
(ry "20"))) ; rounded corners

,@kids)))))

Figure 23. Example post-layout handler for cartouche

6.5 fup cartouche
Finally, when performing post-layout on the cartouche node,
we will want to draw a rectangle and advance the pen. Because
the post-layout handler can return only one node, we wrap the
rectangle and whatever other kids the cartouche has (in this case,
the paragraph) in a generic SVG grouping container, g. The exact
dimensions of the rectangle will depend on the page width, the
size of the paragraph, and the internal padding of the cartouche.
A possible implementation is shown in Figure 23.

6.6 Implementation of fdown, fup, fhere
Having fleshed out all of the data structures of fold-layout, we
are ready for the somewhat complicated implementations of the
fdown, fup, and fhere handlers that fold-layout will pass to
foldts*-values.

We begin with fdown, which is the most difficult handler.
In this case it will be even more complicated than its analog in
pre-post-order, as here there is an additional pre-order handler
(pre-layout), in addition to a different approach to SXML at-
tributes. Specifically, as mentioned in section 6.1, we will avoid
recursing into the SXML @ node, instead treating them as parame-
ters.

Figure 24 shows the implementation of fdown for fold-layout.
There are four cases that it handles, shown in the final cond block.
The first is the degenerate case in which the node’s tag is not in the
bindings set, in which the params and layout are passed unchanged.
The macro and pre cases are very similar to their equivalents in
pre-post-order. Finally, there is the case in which we have to
look up any custom bindings, post handler, and pre-layout han-
dler from the bindings set. Because we skip past the tag and at-
tributes, the cont-with-tag closure is created to reintroduce the
tag to the post handler.

Thankfully, fup and fhere are simple, shown in Figures 25 and
26. With these definitions, fold-layout is complete. Figure 27
shows an example invocation of fold-layout that could be used
to transform the document from Figure 16.

When developing fold-layout, we coded in the capability
for pre and macro handlers, but showed no example of their use.
While further practical use of fold-layout will make their util-
ity more apparent, I imagine that macro handlers will be useful

(define (fdown tree bindings pcont
params layout ret)

(define (fdown-helper new-bindings
new-layout cont)

(let ((cont-with-tag
(lambda args

(apply cont (car tree) args)))
(bindings
(if new-bindings

(append new-bindings bindings)
bindings)))

(cond
((null? (cdr tree))
(values
'() bindings cont-with-tag
(cons '() params) new-layout '()))

((and (pair? (cadr tree))
(eq? (caadr tree) '@))

(let ((params (cons (cdadr tree) params)))
(values
(cddr tree) bindings cont-with-tag
params new-layout '())))

(else
(values
(cdr tree) bindings cont-with-tag
(cons '() params) new-layout '())))))

(define (no-bindings)
(fdown-helper
#f layout
(assq-ref bindings '*default* err)))

(define (macro macro-handler)
(fdown (apply macro-handler tree)

bindings pcont params layout ret))
(define (pre pre-handler)

(values '() bindings
(lambda (params layout

old-layout kids)
(values layout (reverse kids)))

params layout
(apply pre-handler tree)))

(define (have-bindings tag-bindings)
(fdown-helper
(assq-ref tag-bindings 'bindings #f)
((assq-ref tag-bindings 'pre-layout

(lambda (tag params layout)
layout))

tree params layout)
(assq-ref tag-bindings 'post

(assq-ref bindings
'*default* err))))

(let ((tag-bindings (assq-ref bindings
(car tree)
#f)))

(cond
((not tag-bindings)
(no-bindings))
((assq-ref tag-bindings 'macro #f)
=> macro)
((assq-ref tag-bindings 'pre #f)
=> pre)
(else (have-bindings tag-bindings)))))

Figure 24. fdown implementation for fold-layout

SFP 2007 8 2007/6/29

(define (fup tree bindings cont params layout ret
kbindings kcont kparams klayout kret)

(call-with-values
(lambda ()

(kcont kparams layout klayout
(reverse kret)))

(lambda (klayout kret)
(values bindings cont params klayout

(cons kret ret)))))

Figure 25. fup implementation for fold-layout

(define (fhere tree bindings cont params
layout ret)

(call-with-values
(lambda ()

((assq-ref bindings '*text* err)
tree params layout))

(lambda (tlayout tret)
(values bindings cont params tlayout

(cons tret ret)))))

Figure 26. fhere implementation for fold-layout

(define *cartouche-stylesheet*
`((para

(post . ,p-post))
(cartouche
(pre-layout . ,cartouche-pre-layout)
(post . ,cartouche-post))

(*text* . ,text-handler)))
(define *default-params*

'((margin-left 32) (margin-right 32)
(margin-top 32) (margin-bottom 32)
(line-spacing 1.0)
(font-family "Georgia")
(stroke-width 4)
(line-color "blue")
(text-height 64)
(page-width 660)))

(define (cartouche->svg doc)
(fold-layout doc *cartouche-stylesheet*

default-params
(make-layout 0 0)))

Figure 27. Example function, wrapping fold-layout to trans-
form the slides SXML of Figure 16 into the SVG of Figure 17

mostly as abbreviations, and pre handlers as ways of drawing pre-
generated graphic elements onto the canvas without updating the
layout, at least in the SVG case. pre handlers can be seen as a kind
of built-in escape valve, inserting fragments into the output without
further processing.

7. Future Directions and Applications
Several directions of future work are apparent. I have used foldts*
as a basis for fold-layout because it offers the possibility of
single-threaded traversal, but fold based combinators have other
interesting properties as well. As mentioned in section 5, investi-
gating the applicability of proof procedures to XML traversal might
yield fruit, academic or otherwise.

Unmentioned in this paper is XSLT, the standard XML trans-
formation toolkit (W3C 1999b). The SXSLT paper has already
compared XSLT to pre-post-order, including a number of
context-sensitive transformations using second-order techniques
(Kiselyov and Krishnamurthi 2003). It would be interesting to re-
visit the context-sensitive tranformations using a foldts*-based
combinator. Additionally, although angle-bracketed programming
provokes pain, it would be instructive to see a solution to the SVG
layout problem from an XSLT perspective.

The process of parameter specialization in fold-layout, in
which the attributes of each element are prepended to the existing
parameters set, is probably lacking in expressiveness. One would
prefer an even closer similarity to Cascading Style Sheets (CSS)
via support of external style sheets, in addition to those styles
specified in the document itself (W3C 1999a). Perhaps parameters
and SXML attributes are being conflated unnecessarily.

fold-layout, as expressed in the strict language Scheme, cur-
rently assumes that one has the entire document available in mem-
ory. One might investigate the applicability of fold-layout-based
stream transformations, in which data is received one byte at a time
over the network. One particularly interesting avenue to explore
would be integration with SSAX, the fold-based functional XML
parser (Kiselyov 2001). A fold-layout binding set could be com-
piled into a custom SSAX parser.

The SVG layout stylesheet developed in section 6 is simplistic
to an extreme. Its concept of layout as a constantly-advancing pen
position is only suitable for simple problems. It might be worth it
to develop a more capable two-dimensional layout algorithm. Then
there is the fact that the stylesheet does not wrap text lines; indeed,
it does not even know how long a particular text fragment is. This
most-difficult problem could have a solution via the use of Pango,
a text layout and rendering library written in C (Taylor et al. 2007).
Pango is available for Guile Scheme via the Guile-Gnome project
(Wingo et al. 2006).

Alternately, instead of emitting SVG in SXML, one could make
the fold-layout handlers draw directly, using a suitable graphics
library. Cairo, in particular, offers a suitable set of graphics primi-
tives, high quality output, multiple output surface types, and bind-
ings to a number of Scheme implementations (Worth et al. 2007).

The real motivating problem for this paper was, as mentioned
previously, layout of declarative documents into SVG. (As an out-
put format, SVG has the advantage that it can be touched-up via
the use of a canvas-based graphics editor.) A full solution to this
problem would define a standard declarative SXML vocabulary for
presentations, not just the small dialect defined in this paper. One
would want a set of standard transformation bindings for transform-
ing this dialect into SVG, HTML, text, and other output formats.

Very few people will find XML dialects to be an easy medium in
which to draft and create documents, however. Recent years have
seen the rise of more human-friendly structured languages, such
as Markdown (Gruber 2007). The two approaches can meet: given
a Markdown-to-XML parser, one can transform the Markdown
language into the presentation vocabulary, allowing presentation
generation from a Markdown source document. There is at least
one web site that uses SVG for presentations, changing slides via
toggling layer visibility in reaction to keypresses (Hirth 2006).
One can imagine a web service: submit a document in Markdown
format, and the user is mailed a presentation.

Alternately, one could pursue ways to integrate with dedi-
cated SVG viewer programs. Extending this further, an SVG edi-
tor could offer an import-from-Markdown capability, powered by
fold-layout.

SFP 2007 9 2007/6/29

8. Conclusions
These pages have presented several complete XML transformation
tools: post-order, pre-post-order, and fold-layout. The
latter operator proves capable of transforming a declarative XML
document into an absolutely-positioned SVG graphic.

The important result of this paper is not the fold-layout
combinator, however. The important result is that we may see the
generic pure-functional fold operator as underlying many forms of
XML transformation, and that if we need to derive a new combi-
nator, it is possible to do so in a straightforward fashion, as we did
in section 6. Furthermore, foldts*, along with its more comfort-
able cousin foldts*-values, proves to be a particularly lucid and
appropriate fold variant to use as a starting point.

Acknowledgments
I would like to thank Oleg Kiselyov for his encouragement, and for
valuable comments on a draft of this paper.

References
John Gruber. Markdown, 28 April 2007. URL

http://daringfireball.net/projects/markdown/.
Jos Hirth. XSVG Slideshow, 15 August 2006. URL

http://kaioa.com/k/xsvgslide/.
Graham Hutton. A Tutorial on the Universality and Expressiveness

of Fold. Journal of Functional Programming, 9(4):355–372,
July 1999.

Oleg Kiselyov. A better XML parser through functional program-
ming. Lecture Notes in Computer Science, 2257:209, 2001.

Oleg Kiselyov and Shriram Krishnamurthi. SXSLT: Manipulation
Language for XML. Proc. 5th International Symposium on
Practical Aspects of Declarative Languages, PADL ’03, 2003.

Oleg Kiselyov et al. S-exp-based XML parsing/query/conversion,
31 August 2006. URL http://ssax.sourceforge.net/.

Owen Taylor et al. Pango, 28 April 2007. URL
http://www.pango.org/.

W3C. Cascading Style Sheets, Level 1. Technical report,
World Wide Web Consortium (W3C), 11 January 1999a. URL
http://www.w3.org/TR/CSS1.html.

W3C. Scalable Vector Graphics (SVG) 1.1 Specification. Tech-
nical report, World Wide Web Consortium (W3C), 14 January
2003. URL http://www.w3.org/TR/SVG/.

W3C. XHTML 1.0 The Extensible HyperText Markup
Language (Second Edition). Technical report, World
Wide Web Consortium (W3C), 1 August 2002. URL
http://www.w3.org/TR/xhtml1/.

W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition).
Technical report, World Wide Web Consortium (W3C), 16 Au-
gust 2006. URL http://www.w3.org/TR/xml/.

W3C. XSL Transformations (XSLT) Version 1.0. Technical re-
port, World Wide Web Consortium (W3C), 16 November 1999b.
URL http://www.w3.org/TR/xslt/.

Andy Wingo et al. Guile-Gnome, 5 November 2006. URL
http://www.gnu.org/software/guile-gnome/.

Carl Worth et al. The cairo graphics library, 11 May 2007. URL
http://cairographics.org/.

SFP 2007 10 2007/6/29

