
Fold and XML
Transformation
SFP 2007

Andy Wingo

origins

Pain avoidance, indignation

svg instead of openoffice

Each layer can be a slide

bullets in svg is a drag

"This could be better"

SVG is XML, and I have a hammer!

simple slides language

<slides>
 <slide>
 <title>Hi.</title>
 <para>Hello
world</para>
 </slide>
</slides>

example in sxml

(slides
 (slide
 (title "Hi.")
 (para "Hello" (br) "world")))

try rewrite with pre-post-order

Table-driven rewrite of
S-expressions

Great stuff

pre-post-order: slides->html

`((slides . ,(lambda (tag . kids)
 `(html (body ,@kids))))
 (slide . ,(lambda (tag . kids)
 `(div (@ (class "slide"))
 ,@kids)))
 (title . ,(lambda (tag . kids)
 `(h1 ,@kids)))
 (*text* . ,(lambda (tag text)
 text))
 ...)

slides as html

(html
 (body
 (div (@ (class "slide"))
 (h1 "Hi.")
 (p "Hello" (br) "world"))))

slides as svg

(svg (@ (width "1024") (height "768"))
 (g (text
 (@ (x "96") (y "216")
 (font-size "64px"))
 (tspan (@ (x "96") (y "216"))
 "Hello")
 (tspan (@ (x "96") (y "280"))
 "world"))))

pre-post-order: slides->svg

(tspan (@ (x "96") (y "216")) "Hello")
(tspan (@ (x "96") (y "280")) "world")

?

the problem

Rendering a declarative document
into SVG is a context-sensitive
transformation

Post-order transformation is
context-insensitive

multithreadedness

post-order can be expressed in terms
of the multithreaded foldt
(define (foldt fup fhere tree)
 (if (atom? tree)
 (fhere tree)
 (fup (map (lambda (kid)
 (foldt fup fhere kid))
 tree))))

layout is a single-threaded

Need new combinator in terms of
foldts: monadic layout seed
(define (foldts fdown fup fhere seed tree)
 (if (atom? tree)
 (fhere seed tree)
 (fup seed
 (fold (lambda (kid kseed)
 (foldts fdown fup fhere
 kseed kid))
 (fdown seed tree)
 tree)
 tree)))

macro expansion for xml

pre-post-order can also do pre-order
rewrites of the tree

Need ability to modify tree being
traversed

solution: foldts*

(define (foldts* fdown fup fhere seed tree)
 ...
 (call-with-values
 (lambda () (fdown seed tree))
 (lambda (kseed tree)
 (fup seed
 ...))))

multi-valued seeds painful

Writing foldts* handlers painful

Need automatic destructuring of seed

Solution: multi-valued fold

Idea taken from scsh*

foldts*-values

Analogous to fold-values:
(define (fold-values proc list . seeds)
 (if (null? list)
 (apply values seeds)
 (call-with-values
 (lambda ()
 (apply proc (car list) seeds))
 (lambda seeds
 (apply fold-values
 proc (cdr list) seeds)))))

foldts*-values

A general traversal combinator

Handlers convenient to write, easy
destructuring of multi-valued seed

Efficient

pre-post-order for svg layout?

The svg problem: deriving
domain-specific combinators on top
of foldts*-values

foldts not terribly nice to program
directly

"fold-layout"

building on foldts*-values

Decide the format for the seeds*
Implement fdown, fup, fhere*

fold-layout seed format

return value*
some representation of "layout"*
hierarchical params*
current bindings table*
"post-handler"*

fold-layout bindings example

`((slide
 (pre-layout . ,slide-pre-layout)
 (post . ,slide-post))
 (header
 (post . ,header-post))
 (cartouche
 (pre-layout . ,cartouche-pre-layout)
 (post . ,cartouche-post))
 (p
 (post . ,p-post))
 (*text* . ,text-handler))

fold-layout: implementing fdown

Handlers to call in fdown:
pre-layout, pre/macro
(define (cartouche-pre-layout
 tree params layout)
 (let-layout layout (x y)
 (let-params params (margin-left
 margin-top)
 (make-layout (+ x margin-left)
 (+ y margin-top)))))

fold-layout: implementing fup

Handlers to call in fup: post
(define (p-post tag params old-layout layout
 kids)
 (values
 layout
 `(text
 (@ (x ,(make-text-x params old-layout))
 (y ,(make-text-y params old-layout)))
 ,@kids)))

fold-layout: implementing fhere

Handlers to call in fhere: *text*
(define (text-handler text params layout)
 (values
 (layout-advance-text-line params layout)
 `(tspan
 (@ (x ,(make-text-x params layout))
 (y ,(make-text-y params layout)))
 ,text)))

conclusions (1/2)

foldts underlies (all?) XML
transformations

*

foldts* is like foldts, but allows
macro transformation

foldts*-values is a convenient
foldts*

*

*

conclusions (2/2)

When you need foldts, you generally
want a domain-specific combinator
built on foldts.

It is possible to "derive" such
combinators methodically

*

*

fold-layout is such a combinator
Graphics layout with functional
programming

*
*

questions?

Thanks for listening!

Andy Wingo

wingo@pobox.com

wingolog.org/software/guile-present/

