
javascripts
in the javascripts

ffconf 2014

andy wingo

the
es6
circus
is
coming
to
town

es-discuss clownshoes

C++ knife-jugglers

JavaScript acrobats

building
es.next
in
es.now

Hark, an agenda:

Why?❧

How: JavaScriptCore❧

How: SpiderMonkey❧

How: V8❧

why
implement
js in
js?

js is
faster
than
c++

js is
faster
than
c++

JS can optimize in ways that C++ can’t

dynamic inlining❧

inline allocation (and possibly
scalar replacement)

❧

inline hard-wiring of user object
shapes (slot offsets, getters)

❧

js is
faster
than
c++

No JS/C++ transition cost

Especially important for callbacks (e.g.
forEach)

js is
faster
than
c++

JavaScriptCore’s Oliver Hunt, January
2014:

“The initial proof of concept is
Array.prototype.every, this shows a
65% performance improvement, and
that improvement is significantly hurt
by our poor optimisation of op_in.”

js
matches
js
semantics
better

Proxies, accessors, order of effects,
has-property versus get-property,
user-implemented iteration protocol,
exceptions, catch

Terse:
for (var x of y) z(x);

js
more
secure
than
c++

GC-related bugs approximately
impossible

SM, V8; JSC immune❧

No C++ knife-throwing work-related
accidents

integer overflow, use-after-free, etc❧

Cross-iframe leakage concerns
lessened

choosy
hackers
choose
js

Goal: As much in JS as possible

For speed, for security, for
maintainability

How?

simplest
model:
javascriptcore

“Methods can be implemented in JS”

example Source/JavaScriptCore/builtins/
Array.prototype.js
function foo() {
 return 'ahoy ffconf';
}

Source/JavaScriptCore/runtime/
ArrayPrototype.cpp
foo arrayProtoFuncFoo DontEnum|Function 0

weird
js: jsc
edition

Function source compiled separately

Access to globals forbidden in general

Initial values of globals accessible via @
prefix, e.g. @Object

Add @call and @apply

http://svn.webkit.org/repository/
webkit/trunk@163195

more
complicated:
spider
monkey

“Self-hosted JS” files concatenated and
evaluated – more normal model

C++ binds functions by name to
prototype properties

feature:
es.next
‘pipelines’

Old SpiderMonkey:
(x*2 for (x in [0,1,2].keys()))

Erstwhile ES6:
(for (x of [0,1,2].keys()) x*2)

Maybe ES7:
[0,1,2].keys().map(x=>x*2)

Ideally on IteratorPrototype, but
let’s hack it

example js/src/builtin/Iterator.js
function* IteratorMap(f) {
 for (var x of this) yield f(x);
}

example No function* at boot-time :(

But, ES6 object literals
function IteratorMap(f) {
 var iter = this[std_iterator]();
 return {
 next(val) {
 var result = iter.next(val)
 return result.done ? result : {
 value: callFunction(f, iter,
 result.value),
 done: false
 };
 },
 [std_iterator]: IteratorIdentity,
 }
}

example Link to C++ files; grep for surrounding
identifiers, make similar modifications
(e.g. in jsiter.cpp)
js> for (var x of [1,2,3].keys().map(x=>x*2))
 print(x)
0
2
4

nerf
the
web
forward

nerf
the
web
forward

Your search - "nerf the web forward" -
did not match any documents.

nerf
the
web
forward

(like, nerf is like a more resilient
polystyrene foam)

nerf
the
web
forward

(the more joke explanation slides, the
more amusing the joke, right?)

nerf
the
web
forward

(right?)

caveats @@iterator called before or after first
next()?

Prototype chain of the result of map()?

Should final result.value be
mapped?

%IteratorPrototype%

No spec; spec wonkiness

throw()?

next() applied to different object?

v8 Story time!

languages
are
like
operating
systems

Visit a page : Install an app

Visit about:blank : Boot OS

Weird self-hosted JS part of OS, not
app

genesis In the beginning, there was the empty
function

and the Object function

and its prototype property

genesis And Goog looked upon it and saw that
it was good

genesis Then the strict mode function “maps”
(hidden classes)

Then the first global object

Then Array, Number, Boolean, String,
Symbol, Date, RegExp, JSON,
ArrayBuffer, the TypedArrays, Map,
Set, iterator result shapes, WeakMap,
WeakSet, arguments object shapes, ...

genesis And Goog looked upon them and saw
that they were good

genesis And Goog looked upon them and saw
that they were good

But FFS it’s a lot of C++, innit?

how 2
js

Problem: Need to define helpers in JS,
but they shouldn’t be in the user’s
scope

Solution: Second global object for self-
hosted JS to play in; natives mutate to
produce a more beautiful global

builtins,
globals

Global: A global object, corresponding
to a user-facing script-level scope

builtins: The global object current
when self-hosted JS is being defined

In builtins, user-facing global bound
to global

Somewhat confusingly, in V8, “self-
hosted JS facilities” are called “natives”

on the
seventh
day

So, “natives”. That’s JavaScript y’all!

example src/generator.js
function* GeneratorObjectMap(f) {
 for (var x of this) yield f(x);
}

weird
js, v8
edition

Verbs

% prefix for low-level C++ runtime
functions (--allow-natives-
syntax)

❧

%_ prefix for magical “inline”
runtime functions (%_CallFunction,
%_IsSmi)

❧

macros (TO_UINT32, IS_NUMBER)❧

weird
js, v8
edition

Nouns too

global❧

InternalArray (to allow builtins to
use .push() without worrying
about user pollution)

❧

Suggested reading order

runtime.js❧

v8natives.js❧

array.js❧

snapshots Lots of work amirite?

Optimization: Serialize heap of new-
born world

Load fresh heap from disk to “boot”

Necessary in context of Chrome’s
multi-process model

note:
the
dom is
something
else

“Blink-in-JS”

Kentaro Haro: DOM binding overhead
is 5-15% in real web

DOM objects live in a 1-to-N
relationship to V8 globals

Search for “Hardening security of
content scripts”

but
seriously

Strict spec reading

Strict spec translation (optimize later if
ever)

Tests (especially proxies, getters, order
of operations)

Patch submission

Feature flags (in v8)

tx nerf the web forward!

wingo@igalia.com

http://wingolog.org/

.

big kid circus, by ray forster: https://
www.flickr.com/photos/
94418464@N08/8686092191

