Channels,
concurrency,
and Cores

A story of Concurrent ML
Andy Wingo ~ wingo@igalia.com
wingolog.org ~ @andywingo

agenda An accidental journey

Concurrency quest
Making a new CML
A return

start Me: Co-maintainer of Guile Scheme
from Concurrency in Guile: POSIX threads
home A gnawing feeling of wrongness

pthread Not compositional

gnarlies Too low-level
Not I/0O-scalable

Recommending pthreads is
malpractice

fibers: Lightweight threads

d New Built on coroutines (delimited
h ope continuations, prompts)

Suspend on blocking I/0
Epoll to track fd activity
Multiple worker cores

the Last year...

sages Me: Lightweight fibers for I/0, is it
of the right thing?

Matthias Felleisen, Matthew Flatt:
Irome Yep but see Concurrent ML

Me: orly. kthx
MF & MF: np

time Concurrent ML: What is this thing?

to How does it relate to what people
learn know from Go, Erlang?

Is it worth 1t?

But first, a bit of context...

from
pl to
OS

Event-based concurrency

(define (run sched)
(match sched
(($ $sched 1nbox 1/0)
(define (dequeue-tasks)
(append (dequeue-all! 1nbox)
(poll-for-tasks 1/0))
(lLet Lp ((rung (dequeue-tasks))
(match rung
((t . runq)
(begin (t) (lp runq)))
(()
(Lp (dequeue-tasks))))))))

)
)

fI‘Om (match sched

(($ $sched 1nbox 1/0)
plto)
OS Enqueue tasks by posting to inbox

Register pending I/O events on i/o (
epoll td and callbacks)

Check for I/0 after running current
queue

Next: layer threads on top

(define tag (make-prompt-tag))

(define (call/susp fn args)
(define (body) (apply fn args))
(define (handler k on-suspend) (on-suspend Kk))
(call-with-prompt tag body handler))

(define (suspend on-suspend)
(abort-to-prompt tag on-suspend))

(define (schedule k . args)
(match (current-scheduler)

(($ $sched 1nbox 1/0)
(enqueue! 1nbox (lambda () (call/susp k args))))))

Suspend (define (spawn-fiber thunk)
to (schedule thunk))

y1€1d (define (yield)

(suspend schedule))

(define (wait-for-readable fd)
(suspend
(Lambda (k)
(match (current-scheduler)
(($ $sched 1nbox 1/0)
(add-read-fd! 1/0 fd k))))))

back Channels and fibers?
1n Felleisen & Flatt: CML.
rome Me: Can we not tho

Mike Sperber: CML; you will have to
reimplement otherwise

Me: ...

channels Tony Hoare in 1978: Communicating
Sequential Processes (CSP)

“Processes” rendezvous to exchange
values

Unbuftfered! Not async queues; Go,
not Erlang

Channel (define (recv ch)
(match ch

recv (($ $channel recvg sendq)
(match (try-dequeue! sendq)
(#(value resume-sender)
(resume-sender)
value)
(#T
(suspend
(Lambda (k)
(enqueue! recvqg k))))))))

(Spot the race?)

select Wait on 1 of N channels: select

begets Not just recv
OPS (select (recvA) (send B))

Abstract channel operation as data
(select (recv-op A) (send-op B))

Abstract select operation

(define (select . ops)
(perform (apply choice-op ops)))

which Missing bit: how to know which
op operation actually occured

(wrap-op op k):1if op occurs, pass its
result values to £

(perform
(wrap-op
(recv-op A)
(Lambda (v)
(string-append "hello, " v))))

happened?

[f performing this op makes a
rendezvous with fiber sending
"world", result is "hello, world"

this 1s John Reppy PLDI 1988:
“Synchronous operations as first-
cml class values”

exp . (Lambda () exp)

(recv ch) : (recv-op ch)

PLDI 1991: “CML: A higher-order
concurrent language”

Note use of “perform/op” instead of
“sync/event”

What’S Recall structure of channel recv:

dll Op'? -+ Optimistic: value ready; we take
it and resume the sender

2 Pessimistic: suspend, add
ourselves to recvqg

(Spot the race?)

what’s General pattern
an op¢ Optimistic phase: Keep truckin’
& commit transaction
a resume any other parties to txn
Pessimistic phase: Park the truck
a suspend thread
a publish fact that we are waiting

a recheck if txn became
completable

what’s (define (perform op)

(match optimistic
dll OP? (#T pessimistic)
(thunk (thunk))))

Op: data structure with try, block,
and wrap fields

Optimistic case runs op’s try tnh
Pessimitic case runs op’s block fn

Channel (define (try-recv ch)

(match ch
IrecCv- (($ $channel recvg sendq)
OP tI‘y (match (atomic-ref sendq)

(() #T)
((and g (head . tail))

(match head
(#(val resume-sender state)
(match (CAS! state 'W 'S)
('W
(resume-sender)
(CAS! sendq g tail) ; ?
(Lambda () val))
(_#1)))))))))

when
there
1S NO

try

try function succeeds? Caller does
not suspend

Otherwise pessimistic case; three
parts:

(define (pessimistic block)
;3 1. Suspend the thread

(suspend

(Llambda (k)
;7 2. Make a fresh opstate

(let ((state (fresh-opstate)))
»; 3. Call op's block fn

(block k state)))))

opstates

Operation state (“opstate”). atomic
state variable

a W: “Waiting”; initial state

a (. “Claimed”; temporary state
a S: “Synched”; final state

Local transitions W->C, C->W, C->S
Local and remote transitions: W->S

Each instantiation of an operation
gets its own state: operations
reusable

channel
recv-

Op
block

Block tn called after thread suspend

Two jobs: publish resume fn and
opstate to channel’s recvq, then try
again to receive

Three possible results of retry:
a Success? Resume self and other

=+ Already in S state? Someone else
resumed me already (race)

a Can’t even? Someone else will
resume me in the future

(define (block-recv ch resume-recv recv-state)
(match ch
(($ $channel recvqg sendq)
*» Publish -- now others can resume us!
(enqueue! recvq (vector resume-recv recv-state))
»; Try agaln to receive.
(let retry ()
(match (atomic-ref sendq)
(() #T)
((and g (head . tail))
(match head
(#(val resume-send send-state)
*+ Next slide :)
(_#1))))))))

(match (CAS! recv-state 'W 'C) * Claim our state

('W
(match (CAS! send-state 'W 'S)

('W - We did it!
(atomic-set! recv-state 'S)

(CAS! sendqg g tail) ; Maybe GC.
(resume-send) (resume-recv val))

('C » Conflict; retry.
(atomic-set! recv-state 'W)

(retry))

('S , GC and retry.

(atomic-set! recv-state 'W)
(CAS! sendq q tail)

(retry))))
('S #T))

ok Congratulations for getting this far

that’s Also thank you

it for Left out only a couple details: try
d can loop if sender in C state, block
code needs to avoid sending to self

bllt select doesn’t have to be a

what primitive!
choose-op try function runs all try
about functions of sub-operations (possibly
select in random order) returning early if
one succeeds

choose-op block function does the
same

Optimizations possible

cml 1s
inevitable

Channel block implementation
necessary for concurrent multicore
send/receive

CML try mechanism is purely an
optimization, but an inevitable one

CML is strictly more expressive than
channels — for free

suspend
thread

In a coroutine? Suspend by yielding

In a pthread? Make a mutex/cond
and suspend by pthread cond wait

Same operation abstraction works
for both: pthread<->pthread,
pthread<->fiber, fiber<->fiber

lineage 1978: CSP, Tony Hoare
1983: occam, David May
1989, 1991. CML, John Reppy

2000s: CML in Racket, MLton, SML-
NJ

2009: Parallel CML, Reppy et al

CML now:
manticore.cs.uchicago.edu

This work: github.com/wingo/fibers

novelties Reppy’s CML uses three phases: poll,
do, block

Fibers uses just two: there 1s no do,
only try

Fibers channel implementation
lockless: atomic sendg/recvqg
instead

Integration between fibers and
pthreads

Given that block must re-check, try
phase just an optimization

What Implementation: github.com/wingo/
about fibers, as a Guile library; goals:

D erf a Dozens of cores, 100k fibers/core

a (One epoll sched per core, sleep
when idle

2 Optionally pre-emptive
2 (Cross-thread wakeups via inbox

System: 2 X E5-2620v3 (6 2.6GHZ
cores/socket), hyperthreads off,
performance cpu governor

Results mixed

Chain sends per second
600000

560000

520000 -
~=493776 Fs03638 éuaml

480000 —E465650 * | =369529

440000 = %435717
470529

400000 F407174__ 5
360000 -2565649 - —?363210

320000 i — 3308749 —FE307314 g
280000 BOBTOTT o002 - #300399 F296472

0 links
10 links
~ 100 links

+290248 -
%79681 *74541 —2369419 ;262 690
240000 243708

200000 204509

160000
120000
80000 — 07218 87308 — —=B6779 -meB5314 —==$4555 =B4117 —==83634 —WB4493 — 83272 —83378 -WBI1T1l =F5370
40000
0
1 2 3 4 < 6 7 8 < 10 11 12
Core count

Good: Speedups; Low variance
Bad: Diminishing returns; NUMA cliff; I/0 poll costly

caveats

Sublinear speedup expected
a (Overhead, not workload

Guile is bytecode VM, 0.4e9 insts
retired /s on this machine

- Compare to 10.4e9 native at 4 IPC
Can’t isolate test from Fibers

2 epoll overhead, wakeup by td
Can’t isolate test from GC

2 STW parallel mark lazy sweep,
STW via signals, NUMA-blind

Pairs of fibers passing messages; random core allocation

Ping pong messages per second
640000 10 pairs
600000 100 pairs

560000
520000 24451

507227 .
480000 72274 =473098

440000 141041 T
‘?431695 415620

400000 - S 00236 3 & 89392992
= 83487 1‘387285 1 390420 ¥391605 -
360000 Sl - : - 374180 367646 B3gysg TB74285

T = - 349963

320000 --=517025 -

280000
240000

200000
160000

120000
80000

40000
0

b
4?\)
wun
C0~J
N

1 2 3 4 5 6 7 8 =] 10 11 12
Core count

More runnable fibers per turn = less I/O overhead

One-to-n fan-out

Fan-out message sends per second

480000 .
10 recelvers

440000 ' 100 receivers
400000 Z393056 398757

&360794 i
360000 _ -
320000 il 321071
3583
C

¥298342 Z=yo3g1p E296101

280000 276587

%zme 263822 %953666 B

240000 —w534407
200000 526

160000
120000
80000

40000

0
1 2 3 4 5 6 7 8 o 10 11 12
Core count

More “worker” fibers = less worker sleep/wake cost

n-dimensional cube diagonals

N-dimension cube diagonals per second

10 dimensions
16000 100 dimensions

?14526
14000 = ?14004 E S
13000 = - = z:q2741

=34228

%12299 ~$12065

S11658 ==11596

Core count

Very little workload; serial parts soon a bottleneck

False sieve of Erastothenes

False sieve of Erastothanes throughput
0.3000

0.2800
0.2600
0.2400

0.2200 ¥.2124

0.2000
0.1800 #0.1870

0.1600 =0.1598

0.1400

0.1200
0.1000 =103

2000th prime

£0.2299 %0'2374 %).2324

"
i

0.2267
2163
%.2030

-%0.1962
. $0.1874

8.00e-2
6.00e-2
4.00e-2
2.00e-2

1 2 3 4 5 6 7 8 o 10 11 12
Core count

Nice speedup, but NUMA cliff

but CML “guard” functions
Wait : Other event types: cvars, timeouts,
there’s thread joins...

Patterns for building apps on CML:

more “Concurrent Programming in ML”,
John Reppy, 2007

CSP book: usingcsp.com

OCaml “Reagents” from Aaron
Turon

and in Possible to implement CML on top of
the channels+select: Vesa Karvonen’s
impl in F# and core.async

meantime

Limitations regarding self-sends

Right way is to layer channels on top
of CML

SUImMindary Language and framework
developers: the sages were right,

build CML!

You can integrate CML with existing
code (thread pools etc)

github.com/wingo/fibers

github.com/wingo/fibers/wiki/
Manual

Design systems with CSP, build them
in CML

Happy hacking! ~ @andywingo

