
Channels,
Concurrency,
and Cores
A story of Concurrent ML

Andy Wingo ~ wingo@igalia.com

wingolog.org ~ @andywingo

agenda An accidental journey

Concurrency quest

Making a new CML

A return

start
from
home

Me: Co-maintainer of Guile Scheme

Concurrency in Guile: POSIX threads

A gnawing feeling of wrongness

pthread
gnarlies

Not compositional

Too low-level

Not I/O-scalable

Recommending pthreads is
malpractice

fibers:
a new
hope

Lightweight threads

Built on coroutines (delimited
continuations, prompts)

Suspend on blocking I/O

Epoll to track fd activity

Multiple worker cores

the
sages
of
rome

Last year...

Me: Lightweight fibers for I/O, is it
the right thing?

Matthias Felleisen, Matthew Flatt:
Yep but see Concurrent ML

Me: orly. kthx

MF &MF: np

time
to
learn

Concurrent ML: What is this thing?

How does it relate to what people
know from Go, Erlang?

Is it worth it?

But first, a bit of context...

from
pl to
os

Event-based concurrency
(define (run sched)
 (match sched
 (($ $sched inbox i/o)
 (define (dequeue-tasks)
 (append (dequeue-all! inbox)
 (poll-for-tasks i/o)))
 (let lp ((runq (dequeue-tasks)))
 (match runq
 ((t . runq)
 (begin (t) (lp runq)))
 (()
 (lp (dequeue-tasks))))))))

from
pl to
os

(match sched
 (($ $sched inbox i/o)
 ...))

Enqueue tasks by posting to inbox

Register pending I/O events on i/o (
epoll fd and callbacks)

Check for I/O after running current
queue

Next: layer threads on top

(define tag (make-prompt-tag))

(define (call/susp fn args)
 (define (body) (apply fn args))
 (define (handler k on-suspend) (on-suspend k))
 (call-with-prompt tag body handler))

(define (suspend on-suspend)
 (abort-to-prompt tag on-suspend))

(define (schedule k . args)
 (match (current-scheduler)
 (($ $sched inbox i/o)
 (enqueue! inbox (lambda () (call/susp k args))))))

suspend
to
yield

(define (spawn-fiber thunk)
 (schedule thunk))

(define (yield)
 (suspend schedule))

(define (wait-for-readable fd)
 (suspend
 (lambda (k)
 (match (current-scheduler)
 (($ $sched inbox i/o)
 (add-read-fd! i/o fd k))))))

back
in
rome

Channels and fibers?

Felleisen & Flatt: CML.

Me: Can we not tho

Mike Sperber: CML; you will have to
reimplement otherwise

Me: ...

channels Tony Hoare in 1978: Communicating
Sequential Processes (CSP)

“Processes” rendezvous to exchange
values

Unbuffered! Not async queues; Go,
not Erlang

channel
recv

(define (recv ch)
 (match ch
 (($ $channel recvq sendq)
 (match (try-dequeue! sendq)
 (#(value resume-sender)
 (resume-sender)
 value)
 (#f
 (suspend
 (lambda (k)
 (enqueue! recvq k))))))))

(Spot the race?)

select
begets
ops

Wait on 1 of N channels: select

Not just recv
(select (recv A) (send B))

Abstract channel operation as data
(select (recv-op A) (send-op B))

Abstract select operation
(define (select . ops)
 (perform (apply choice-op ops)))

which
op
happened?

Missing bit: how to know which
operation actually occured

(wrap-op op k): if op occurs, pass its
result values to k
(perform
 (wrap-op
 (recv-op A)
 (lambda (v)
 (string-append "hello, " v))))

If performing this op makes a
rendezvous with fiber sending
"world", result is "hello, world"

this is
cml

John Reppy PLDI 1988:
“Synchronous operations as first-
class values”

exp : (lambda () exp)

(recv ch) : (recv-op ch)

PLDI 1991: “CML: A higher-order
concurrent language”

Note use of “perform/op” instead of
“sync/event”

what’s
an op?

Recall structure of channel recv:

Optimistic: value ready; we take
it and resume the sender

❧

Pessimistic: suspend, add
ourselves to recvq

❧

(Spot the race?)

what’s
an op?

General pattern

Optimistic phase: Keep truckin’

commit transaction❧

resume any other parties to txn❧

Pessimistic phase: Park the truck

suspend thread❧

publish fact that we are waiting❧

recheck if txn became
completable

❧

what’s
an op?

(define (perform op)
 (match optimistic
 (#f pessimistic)
 (thunk (thunk))))

Op: data structure with try, block,
and wrap fields

Optimistic case runs op’s try fn

Pessimitic case runs op’s block fn

channel
recv-
op try

(define (try-recv ch)
 (match ch
 (($ $channel recvq sendq)
 (match (atomic-ref sendq)
 (() #f)
 ((and q (head . tail))
 (match head
 (#(val resume-sender state)
 (match (CAS! state 'W 'S)
 ('W
 (resume-sender)
 (CAS! sendq q tail) ; ?
 (lambda () val))
 (_ #f)))))))))

when
there
is no
try

try function succeeds? Caller does
not suspend

Otherwise pessimistic case; three
parts:
(define (pessimistic block)
 ;; 1. Suspend the thread
 (suspend
 (lambda (k)
 ;; 2. Make a fresh opstate
 (let ((state (fresh-opstate)))
 ;; 3. Call op's block fn
 (block k state)))))

opstates Operation state (“opstate”): atomic
state variable

W: “Waiting”; initial state❧

C: “Claimed”; temporary state❧

S: “Synched”; final state❧

Local transitions W->C, C->W, C->S

Local and remote transitions: W->S

Each instantiation of an operation
gets its own state: operations
reusable

channel
recv-
op
block

Block fn called after thread suspend

Two jobs: publish resume fn and
opstate to channel’s recvq, then try
again to receive

Three possible results of retry:

Success? Resume self and other❧

Already in S state? Someone else
resumed me already (race)

❧

Can’t even? Someone else will
resume me in the future

❧

(define (block-recv ch resume-recv recv-state)
 (match ch
 (($ $channel recvq sendq)
 ;; Publish -- now others can resume us!
 (enqueue! recvq (vector resume-recv recv-state))
 ;; Try again to receive.
 (let retry ()
 (match (atomic-ref sendq)
 (() #f)
 ((and q (head . tail))
 (match head
 (#(val resume-send send-state)
 ;; Next slide :)
 (_ #f))))))))

(match (CAS! recv-state 'W 'C) ; Claim our state
 ('W
 (match (CAS! send-state 'W 'S)
 ('W ; We did it!
 (atomic-set! recv-state 'S)
 (CAS! sendq q tail) ; Maybe GC.
 (resume-send) (resume-recv val))
 ('C ; Conflict; retry.
 (atomic-set! recv-state 'W)
 (retry))
 ('S ; GC and retry.
 (atomic-set! recv-state 'W)
 (CAS! sendq q tail)
 (retry))))
 ('S #f))

ok
that’s
it for
code

Congratulations for getting this far

Also thank you

Left out only a couple details: try
can loop if sender in C state, block
needs to avoid sending to self

but
what
about
select

select doesn’t have to be a
primitive!

choose-op try function runs all try
functions of sub-operations (possibly
in random order) returning early if
one succeeds

choose-op block function does the
same

Optimizations possible

cml is
inevitable

Channel block implementation
necessary for concurrent multicore
send/receive

CML trymechanism is purely an
optimization, but an inevitable one

CML is strictly more expressive than
channels – for free

suspend
thread

In a coroutine? Suspend by yielding

In a pthread? Make a mutex/cond
and suspend by pthread_cond_wait

Same operation abstraction works
for both: pthread<->pthread,
pthread<->fiber, fiber<->fiber

lineage 1978: CSP, Tony Hoare

1983: occam, David May

1989, 1991: CML, John Reppy

2000s: CML in Racket, MLton, SML-
NJ

2009: Parallel CML, Reppy et al

CML now:
manticore.cs.uchicago.edu

This work: github.com/wingo/fibers

novelties Reppy’s CML uses three phases: poll,
do, block

Fibers uses just two: there is no do,
only try

Fibers channel implementation
lockless: atomic sendq/recvq
instead

Integration between fibers and
pthreads

Given that blockmust re-check, try
phase just an optimization

what
about
perf

Implementation: github.com/wingo/
fibers, as a Guile library; goals:

Dozens of cores, 100k fibers/core❧

One epoll sched per core, sleep
when idle

❧

Optionally pre-emptive❧

Cross-thread wakeups via inbox❧

System: 2 x E5-2620v3 (6 2.6GHz
cores/socket), hyperthreads off,
performance cpu governor

Results mixed

Good: Speedups; Low variance

Bad: Diminishing returns; NUMA cliff; I/O poll costly

caveats Sublinear speedup expected

Overhead, not workload❧

Guile is bytecode VM; 0.4e9 insts
retired/s on this machine

Compare to 10.4e9 native at 4 IPC❧

Can’t isolate test from Fibers

epoll overhead, wakeup by fd❧

Can’t isolate test from GC

STW parallel mark lazy sweep,
STW via signals, NUMA-blind

❧

Pairs of fibers passing messages; random core allocation

More runnable fibers per turn = less I/O overhead

One-to-n fan-out

More “worker” fibers = less worker sleep/wake cost

n-dimensional cube diagonals

Very little workload; serial parts soon a bottleneck

False sieve of Erastothenes

Nice speedup, but NUMA cliff

but
wait,
there’s
more

CML “guard” functions

Other event types: cvars, timeouts,
thread joins...

Patterns for building apps on CML:
“Concurrent Programming in ML”,
John Reppy, 2007

CSP book: usingcsp.com

OCaml “Reagents” from Aaron
Turon

and in
the
meantime

Possible to implement CML on top of
channels+select: Vesa Karvonen’s
impl in F# and core.async

Limitations regarding self-sends

Right way is to layer channels on top
of CML

summary Language and framework
developers: the sages were right,
build CML!

You can integrate CML with existing
code (thread pools etc)

github.com/wingo/fibers

github.com/wingo/fibers/wiki/
Manual

Design systems with CSP, build them
in CML

Happy hacking! ~ @andywingo

