
Scheme on
WebAssembly
It is happening!

7 September 2024 – Scheme ’24

AndyWingo

Igalia, S.L.

Agenda Context: Where can users run Scheme?

How to run Scheme onWebAssembly

Hoot: Guile on WebAssembly (with a
scenic detour)

Getting
Scheme to
the user in
2024

Native executables: Fine, but waning
as a distribution paradigm

HTTP: On the internet, nobody knows
your web server is a Scheme

Browsers: On the client, JS is king

Servers: Docker, K8s; but, ugh

Browsers are
special

Users install dozens of programs a day

Largely on mobile, often low-powered

Network + mobile CPU: strong size
constraint

Executable format: JS source code

Scheme to
JS?

JS virtual machines are amazing

World-class garbage collectors❧

Tiered compilers: low latency and
high throughput

❧

Ubiquitous, evergreen❧

Well-resourced❧

Can != Should JS is not a great compile target

Monkeypatching❧

Unpredictable performance❧

Poor numerics❧

No tail calls❧

Limited stack size❧

Single-threaded❧

Emitting source is gross❧

Meanwhile, in
C++-land

2013: C++ to JS with asm.js

2017: C++ to WebAssembly

Typed functions operating on linear
memory

Capabilities explicitly granted by host
functions (e.g. gl.attachShader)

GC, tail calls always planned, but not
present initially

Scheme to
Wasm?

Not at first!

Choice was between:

Nice virtual machine, no GC❧

Gross source language, great GC❧

If you care about users, JS beat Wasm
as a compile target

...until now

gc pause WasmGC is now in Firefox, Chrome,
and Safari (preview)

Tail calls too

It’s wassembly time!

Let us connive:

What kind of code should we
contrive

❧

Getting there from here: Hoot
compiler deep dive

❧

Scheme to
WasmGC

 any extern func
 |
 eq
 / | \
i31 struct array

The unitype: (ref eq)

Immediate values in (ref i31)

fixnums with 30-bit range❧

chars, bools, etc❧

Explicit nullability: (ref null eq) vs
(ref eq)

Object
representation

(rec
 (type $heap-object
 (sub
 (struct (field $hash i32))))
 (type $pair
 (sub $heap-object
 (struct (field $hash i32)
 (field $car (ref eq))
 (field $cdr (ref eq)))))
 ...)

WasmGC allows subtyping on structs,
functions, arrays

Structural type equivalance, but types
in rec group distinct

Working with
values

(func $cons (param $car (ref eq))
 (param $cdr (ref eq))
 (result (ref $pair))
 (struct.new $pair
 (i32.const 0)
 (local.get $car)
 (local.get $cdr)))

(func $%car (param $pair (ref $pair))
 (result (ref eq))
 (struct.get $pair $car (local.get $pair)))

Dynamic type
checks

(func $car (param $obj (ref eq))
 (result (ref eq))
 (block $not-pair
 (return_call $%car
 (br_on_cast_fail $not-pair
 (ref eq)
 (ref $pair)
 (local.get $obj))))
 (call $type-error)
 (unreachable))

Varargs (list 'hey) ;; => (hey)
(list 'hey 'icfp) ;; => (hey icfp)

Wasm functions strongly typed
(func $list (param ???) (result (ref eq))
 ???)

Varargs
workaround

Uniform function type
(type $argv (array (ref eq)))

(type $kvarargs
 (func (param $nargs i32)
 (param $arg0 (ref eq))
 (param $arg1 (ref eq))
 (param $arg2 (ref eq))
 (param $argv (ref null $argv))
 (result (ref eq)))) ;; *

(func $checked-car (param $nargs i32)
 (param $arg0 (ref eq))
 (param $arg1 (ref eq))
 (param $arg2 (ref eq))
 (param $argv (ref null $argv))
 (result (ref eq))
 (block $bad-arity
 (br_if $bad-arity
 (i32.ne (local.get $nargs)
 (i32.const 2)))
 (return_call $car (local.get $arg1)))
 (call $throw-wrong-number-of-arguments)
 (unreachable))

Multiple
values?

Do the same kind of $kvarargs
treatment as calls?

This is getting a little silly

Layering dynamic typing over static
typing is more overhead than direct
implementation in VM

Let’s get back to this later

Prompts Guile uses prompts for lightweight
threads/fibers, exceptions

“Bring your whole self”

Idea: CPS-convert to stack-allocate
return continuations

Delimited continuations are then just
stack slices

Stack
allocation of
return
continuations

To make a non-tail-call:

Push live-out vars on stacks (one
stack per top type)

❧

Push return continuation on stack❧

Tail-call callee❧
(type $kvarargs
 (func (param $nargs i32)
 (param $arg0 (ref eq))
 (param $arg1 (ref eq))
 (param $arg2 (ref eq))
 (param $argv (ref null $argv))))

Returns are
tail calls

(func $values (param $nargs i32)
 (param $arg0 (ref eq))
 (param $arg1 (ref eq))
 (param $arg2 (ref eq))
 (param $argv (ref null $argv))
 (return_call_ref
 (call $pop-return-stack)
 (local.get $nargs)
 (local.get $arg0)
 (local.get $arg1)
 (local.get $arg2)
 (local.get $argv)))

After return, continuation pops state
from stacks

Prompts for
free

abort-to-prompt:

Pop stack slice to reified
continuation object

❧

Tail-call new top of stack: prompt
handler

❧

Calling a reified continuation:

Push stack slice❧

Tail-call new top of stack❧

No need to wait for effect handlers
proposal; you can have it all now!

Hoot! Hoot is Guile for WebAssembly

Whole-program compilation, single
binary

❧

Same source language, different
implementation

❧

Shared front-end and middle-end❧

Goal: Get Spritely’s Goblins on the
web

https://davexunit.itch.io/cirkoban

Hoot
compiler
pipeline

Front-end

library-groupmakes a big
letrec* (Hoot)

❧

fix-letrec* sorts SCCs to nested
let and fix (Guile)

❧

peval inlines, eliminates dead
code, high-level constant folding,
some algebraic reduction (Guile)

❧

https://wingolog.org/archives/
2024/05/22/growing-a-bootie

Modules can
use syntax
from their
imports

Syntax runs
on host, uses
imported
bindings

Modules live
on host,
residualized
for target

Scenic detour Middle-end

Let’s go for a walk❧

Guile’s
middle end

Middle-end spans gap between high-
level source code (AST) and low-level
machine code

Programs in middle-end expressed in
intermediate language

CPS Soup is the language of Guile’s
middle-end

How to
lower?

High-level:
(+ 1 (if x 42 69))

Low-level:
 cmpi $x, #f
 je L1
 movi $t, 42
 j L2
L1:
 movi $t, 69
L2:
 addi $t, 1

How to get from here to there?

1970s Control-flow graph (CFG)
graph := array<block>
block := tuple<preds, succs, insts>
inst := goto B
 | if x then BT else BF
 | z = const C
 | z = add x, y
 ...

BB0: if x then BB1 else BB2
BB1: t = const 42; goto BB3
BB2: t = const 69; goto BB3
BB3: t2 = addi t, 1; ret t2

Assignment, not definition

1980s Static single assignment (SSA) CFG
graph := array<block>
block := tuple<preds, succs, phis, insts>
phi := z := φ(x, y, ...)
inst := z := const C
 | z := add x, y
 ...
BB0: if x then BB1 else BB2
BB1: v0 := const 42; goto BB3
BB2: v1 := const 69; goto BB3
BB3: v2 := φ(v0,v1); v3:=addi t,1; ret v3

Phi is phony function: v2 is v0 if
coming from first predecessor, or v1
from second predecessor

2003: MLton Refinement: phi variables are basic
block args
graph := array<block>
block := tuple<preds, succs, args, insts>

Inputs of phis implicitly computed
from preds
BB0(a0): if a0 then BB1() else BB2()
BB1(): v0 := const 42; BB3(v0)
BB2(): v1 := const 69; BB3(v1)
BB3(v2): v3 := addi v2, 1; ret v3

Scope and
dominators

BB0(a0): if a0 then BB1() else BB2()
BB1(): v0 := const 42; BB3(v0)
BB2(): v1 := const 69; BB3(v1)
BB3(v2): v3 := addi v2, 1; ret v3

What vars are “in scope” at BB3? a0
and v2.

Not v0; not all paths from BB0 to BB3
define v0.

a0 always defined: its definition
dominates all uses.

BB0 dominates BB3: All paths to BB3
go through BB0.

Refinement:
Control tail

Often nice to know how a block ends
(e.g. to compute phi input vars)
graph := array<block>
block := tuple<preds, succs, args, insts,
 control>
control := if v then L1 else L2
 | L(v, ...)
 | switch(v, L1, L2, ...)
 | ret v

Refinement:
DRY

Block successors directly computable
from control

Predecessors graph is inverse of
successors graph
graph := array<block>
block := tuple<args, insts, control>

Can we simplify further?

Basic blocks
are annoying

Ceremony about managing insts; array
or doubly-linked list?

Nonuniformity: “local” vs “global”
transformations

Optimizations transform graph A to
graph B; mutability complicates this
task

Desire to keep A in mind while
making B

❧

Bugs because of spooky action at a
distance

❧

Basic blocks,
phi vars
redundant

Blocks: label with args sufficient;
“containing” multiple instructions is
superfluous

Unify the two ways of naming values:
every var is a phi
graph := array<block>
block := tuple<args, inst>
inst := L(expr)
 | if v then L1() else L2()
 ...
expr := const C
 | add x, y
 ...

Arrays
annoying

Array of blocks implicitly associates a
label with each block

Optimizations add and remove blocks;
annoying to have dead array entries

Keep labels as small integers, but use a
map instead of an array
graph := map<label, block>

This is CPS
soup

graph := map<label, cont>
cont := tuple<args, term>
term := continue to L
 with values from expr
 | if v then L1() else L2()
 ...
expr := const C
 | add x, y
 ...

SSA is CPS

No explicit scope tree: implicit
property of control flow

CPS soup in
Guile

Compilation unit is intmap of label to
cont
cont := $kargs names vars term
 | ...
term := $continue k src expr
 | ...
expr := $const C
 | $primcall 'add #f (a b)
 | ...

Conventionally, entry point is lowest-
numbered label

CPS soup term := $continue k src expr
 | $branch kf kt src op param args
 | $switch kf kt* src arg
 | $prompt k kh src escape? tag
 | $throw src op param args

Expressions can have effects, produce
values
expr := $const val
 | $primcall name param args
 | $values args
 | $call proc args
 | ...

Kinds of
continuations

Guile functions untyped, can have
multiple return values

Error if too few values, possibly
truncate too many values, possibly
cons as rest arg...

Calling convention: contract between
val producer & consumer

both on call and return side❧

Continuation of $call unlike that of
$const

The conts cont := $kfun src meta self ktail kentry
 | $kclause arity kbody kalternate
 | $kargs names syms term
 | $kreceive arity kbody
 | $ktail

$kclause, $kreceive very similar

Continue to $ktail: return

$call and return (and $throw, $prompt)
exit first-order flow graph

High and low CPS bridges AST (Tree-IL) and target
code

High-level: vars in outer functions in
scope

Closure conversion between high and
low

Low-level: Explicit closure
representations; access free vars
through closure

Optimizations
at all levels

Optimizations before and after
lowering

Some exprs only present in one level

Some high-level optimizations can
merge functions (higher-order to first-
order)

Practicalities Intmap, intset: Clojure-style persistent
functional data structures

Program: intmap<label,cont>

Optimization: program→program

Identify functions:
(program,label)→intset<label>

Edges: intmap<label,intset<label>>

Compute succs:
(program,label)→edges

Compute preds: edges→edges

Flow analysis A[k] = meet(A[p] for p in preds[k])
 - kill[k] + gen[k]

Compute available values at labels:

A: intmap<label,intset<val>>❧

meet: intmap-intersect<intset-
intersect>

❧

-, +: intset-subtract, intset-
union

❧

kill[k]: values invalidated by cont
because of side effects

❧

gen[k]: values defined at k❧

Persistent
data
structures
FTW

meet: intmap-intersect<intset-
intersect>

❧

-, +: intset-subtract, intset-
union

❧

Naïve: O(nconts * nvals)

Structure-sharing: O(nconts *
log(nvals))

CPS soup:
strengths

Relatively uniform, orthogonal

Facilitates functional transformations
and analyses, lowering mental load: “I
just have to write a function from foo
to bar; I can do that”

Encourages global optimizations

Some kinds of bugs prevented by
construction (unintended shared
mutable state)

We get the SSA optimization literature

CPS soup:
weaknesses

Pointer-chasing, indirection through
intmaps

Heavier than basic blocks: more
control-flow edges

Names bound at continuation only;
phi predecessors share a name

Over-linearizes control, relative to sea-
of-nodes

Overhead of re-computation of
analyses

CPS soup:
summary

CPS soup is SSA, distilled

Labels and vars are small integers

Programs map labels to conts

Conts are the smallest labellable unit
of code

Conts can have terms that continue to
other conts

Back to the
middle-end

Lower to CPS Soup (Guile)❧

DCE, simplification, CSE, loop
peeling, flow-sensitive folding,
contification (Guile)

❧

Closure optimization, unboxing,
LICM, and so on (Guile)

❧

The back-end “Tailify” (the true CPS conversion)
(Hoot)

❧

Compute dominator tree (Hoot)❧

Apply “Beyond Relooper” to go
from CPS Soup CFG to Wasm
control-flow (ICFP 2022; Hoot)

❧

Every CPS Soup variable is a wasm
function-local variable

❧

Back of the
back-end

Result is a <wasm> object: Hoot has a
whole Wasm toolchain

Text parser, serializer❧

Binary parser, serializer❧

Linker, various transformations❧

Validator, virtual machine (!!!)❧

Result is not browser-specific: same
module can run on Hoot VM, in
browser, on Node

Hoot status Full R7RS, except environment, and
eval doesn’t have a working macro
expander yet

Partial R6RS

Partial Guile

A work in progress, but becoming
good, actually

https://spritely.institute/news/
guile-hoot-v050-released.html

~ fin ~ Wasm is finally here for us!

Hoot’s future: supporting all of Guile,
and maybe merging into Guile

Steal Hoot’s wasm toolkit!

Let’s ship Scheme everywhere!

https://spritely.institute/hoot

